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Abstract 14 

A novel nano phase change material emulsion (NPCE) with low supercooling and high thermal 15 

conductivity was prepared by sonication method. N-octadecane was employed as phase change 16 

material, multi-walled carbon nanotubes (MWCNTs) were utilised as high thermal conductivity 17 

material, and octadecanol was utilised as nucleating agent. The characterization and thermal 18 

properties of the nanoemulsions prepared with various concentrations of MWCNTs and octadecanol 19 

were measured and analysed by scanning electron microscopy (SEM), transmission electron 20 

microscopy (TEM), particle size analyzer, differential scanning calorimeter (DSC) and thermal 21 

conductivity meter. The results indicated that the nanoemulsions prepared had great stability, low 22 

supercooling and enhanced thermal conductivity. The thermal conductivity was enhanced by 4.32 % 23 

for 10 wt% nanoemulsion with addition of 1 wt% MWCNTs. The supercooling degree of 20 wt% 24 

nanoemulsion was decreased by 36.4 % from 17.3 ℃ to 11.0 ℃ with addition of 1 wt% octadecanol. 25 

It can be concluded that the nanoemulsions prepared were able to be utilised as heat transfer and 26 

energy storage fluids, with great potential in thermal system applications.  27 
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1. Introduction 41 

Thermal energy storage (TES) has great energy-saving potential and can reduce environmental 42 

pollution [1]. Latent heat storage using phase change material (PCM) to absorb latent heat during 43 

melting process and release latent heat during crystallization process is considered to be the most 44 

effective method for cold energy storage or heat recovery [2]. In the same temperature range, latent 45 

heat storage system has more energy storage capacity than sensible heat storage system. The high 46 

energy storage density also makes the volume of the latent heat storage system smaller and is the 47 

reason for its constant temperature characteristics [3]. Latent heat storage absorbs and releases heat 48 

within a very small range of or at a specific temperature during phase transition [4]. PCM can be 49 

classified into four categories and solid-liquid PCM are the most common materials that have been 50 

extensively investigated due to their easily controllable volumes [5]. Microencapsulated phase change 51 

material slurry and phase change material emulsions presented great potential in air-conditioning 52 

systems and solar thermal systems [6-8]. Intensive investigations have been carried out by numerous 53 

researchers on the fabrication, flow, heat transfer characteristics and thermal properties of 54 

microencapsulated phase change material slurry and phase change material emulsions.    55 

Nomenclature 

 

 

Hc heat of crystallization (kJ/kg) 

Hf heat of fusion (kJ/kg) 

k thermal conductivity (W/(m oC) ) 

T temperature (oC) 

Tm  melting temperature (oC) 

Tc   crystallizing temperature (oC) 

ΔT supercooling degree ( oC) 
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Microencapsulated phase change material slurry has some disadvantages such as complex preparation 56 

process, risk of microcapsule leakage, ease of demulsification during usage and long-term slurry 57 

instability. Alkan and Sari [9] prepared four kinds of fatty acid/poly methyl methacrylate 58 

microcapsules and the results indicated that form-stable fatty acid/PMMA microcapsules had great 59 

prospect in the industrial applications of latent heat thermal energy storage. Liu et al.[10] prepared 60 

phase change microcapsules with lauryl alcohol as PCM and melamine-formaldehyde inclusion 61 

graphite as shell by in-situ polycondensation. It was found that the phase change temperature of 62 

microcapsules was close to that of pure paraffin while the specific heat and thermal conductivity of 63 

microcapsules were higher than that of pure paraffin.  64 

Investigation were also carried out on the addition of tetradecanol as nucleating agent into n-65 

tetradecane microcapsules was conducted by Alvarado et al. [11]. The results showed that the addition 66 

of 2 % or 4 % n-tetradecanol had a great inhibitory effect on supercooling. Zhu et al. [12]  67 

respectively used n-dodecane (C12) and n-tetradecane (C14) as PCM to synthesis microcapsules by 68 

in-situ polymerization. A small amount of n-hexatriacontane (C36) was added to the microcapsule as 69 

nucleating agent. When the mass fraction of C36 was 3wt %, supercooling of C12 and C14 70 

microcapsules was reduced to 5.8 oC and 2.9 oC, respectively. Al-shannaqetet al. [13] selected RT58 71 

and 1-octadecanol as nucleating agents to reduce or eliminate supercooling in the microcapsules. The 72 

onset crystallization temperature of RT21 phase change microcapsules shifted from 10.9 to 19.8 °C 73 

when 5wt% of RT58 was added. The addition of 1-octadecanol had a negative effect that made the 74 

temperature range of crystallization process wider. Ahmet et al. [14] synthesized a series of 75 

polystyrene(PS)/(tetracosane(C24)–octadecane(C18)) micro/nano phase change capsules by using 76 

emulsion polymerization method, the results show that the micro/nanocapsules prepared can be 77 

utilised for low-temperature latent heat thermal energy storage. Furthermore, Wang et al.[15] prepared 78 

a novel microencapsulated PCM which showed great potential for solar energy storage and intelligent 79 

textiles. 80 
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Phase change emulsion has advantages such as simple preparation process, good stability and low 81 

cost. In recent years, many researchers have investigated properties of phase change emulsion and its 82 

application in the engineering field. Two novel solid-liquid phase change fluids, phase change 83 

microcapsule slurry and phase change material emulsion have been proposed [16]. Mo et al.[17] 84 

added L-MWNT-1030, L-MWNT4060 and L-MWNT-60100 into deionized water to prepare 85 

nanofluids. The mass fraction of surfactants and the size of carbon nanotubes varied with supercooling 86 

and freezing time. The supercooling degree and the initial solidification time of nanofluids prepared 87 

using L-MWNT-1030 were lower than those of deionized water. The nucleation mechanism and 88 

stability of nanofluids also affected the solidification behaviour of the solution. Liu et al. [18] 89 

investigated supercooling and nucleation rate of nanofluids prepared by deionized water and graphene 90 

as additive particle. The results show that the supercooling degree of deionized water was 31.5 K. 91 

The supercooling degree of the nanofluids with various concentrations of graphene was 7.98, 7.93, 92 

3.05 and 3.03 K, respectively, which indicated that the supercooling degree decreased by more than 93 

74 % with increase in graphene.  94 

Huang et al. [19] showed that different surfactants had no effect on the supercooling while nucleating 95 

agents had an effect on the melt and solidification temperature of the emulsion, which could 96 

effectively reduce the supercooling degree. Shao et al.[20] indicated that supercooling, stability and 97 

viscosity of phase change emulsions are related to each other and a balance among them was needed. 98 

Wang et al. [21] prepared 30 % paraffin emulsion with 2.0 % nano-graphite and the supercooling 99 

degree was reduced from 9.9 ℃ to 0 ℃, and the viscosity was lower than that of 11.5 mPa·s. Zhang et 100 

al. [22] developed a phase change emulsion with n-hexadecane and modified CNTs as nucleating 101 

agent. The result showed that the supercooling degree of the emulsion was reduced by 43 %. Shao et 102 

al. [23] developed a novel paraffin-water emulsion with RT10. The heat storage capacity of emulsion 103 

was almost twice as much as that of water and its supercooling was reduced to 0.2℃. Nevertheless, 104 

the viscosity of the emulsion was much higher than water while the value of thermal conductivity was 105 
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lower.  106 

Zhang et al. [24] added 0.1 wt% MWCNTs as nucleating agent into n-hexadecane/water emulsion 107 

and the supercooling degree of emulsion was decreased by 3.68 ℃. In addition, they modified the 108 

surface of MWCNTs. When the concentration of the modified MWCNTs was 0.6 wt%, the 109 

supercooling of emulsion was reduced by 14.67 ℃. The emulsion of a lower viscosity was prepared 110 

by Wang et al. [25] with paraffin wax as PCM and polyvinyl alcohol (PVA), polyethylene glycol 111 

(PEG 600) and 0.05 % nano-graphite as dispersants. The heat storage density of the emulsion was 112 

twice that of water. Several nano-fluids were prepared by Salla et al. [26], the melting temperature of 113 

the emulsion was 3-4 °C lower than those of bulk materials. The latent heat value was basically 114 

consistent with the theoretical value, and the specific heat capacity of the emulsion was 3 % different 115 

from the theoretical value. Zhang et al. [27] prepared composite fatty acid emulsion using sebacic 116 

acid and lauric acid as PCM and the supercooling degree was reduced from 20 ℃ to 10 ℃ after adding 117 

hexadecanol as nucleating agent. Wang et al. [28] prepared polysiloxane capsules with erythritol as 118 

PCM by ultraviolet assisted hydrolysis. The thermal conductivity of polysiloxane capsules was 0.84 119 

W/(m·K). The supercooling degree was reduced by 83.6 % and the exothermic ratio was increased 120 

by 52.2 % due to the improvement of crystallization kinetics. 121 

There are two primary problems in the existing nano phase change material emulsion: low thermal 122 

conductivity and serious supercooling during the crystallization process. Supercooling occurs when 123 

PCM transits from liquid to solid and the liquid still does not crystallize below the freezing point [29]. 124 

Therefore, there will be a temperature interval at the time of charging and releasing, which affects the 125 

performance of the latent heat storage system. A lower supercooling degree and a higher thermal 126 

conductivity improves the energy efficiency of the system and the phase change process of PCMs 127 

[30]. However, there are limited studies in the literature to solve the above two problems 128 

simultaneously. Therefore, the aim of this paper was to propose a novel PCM nanoemulsion that can 129 

improve the thermal conductivity and effectively decrease the supercooling degree. This paper builds 130 
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on previous investigations [31, 32] and fabricated a series of PCM nanoemulsions with high thermal 131 

conductivity and low supercooling degree. In addition, the proposed fabrication method reduced 132 

fabrication cost of PCM nanoemulsion as the shell material was eliminated in the fabrication process.  133 

2. Method and materials 134 

2.1. Materials 135 

N-octadecane (99 wt% purity), multi-walled carbon nanotubes (99 wt% purity), and octadecanol (99 136 

wt% purity) were supplied by Macklin Inc, Shanghai. Sodium dodecyl sulphate (SDS) was provided 137 

by Sinopharm Chemical Reagent Co., Ltd, Shanghai.  138 

2.2. Synthesis of PCM nanoemulsions 139 

10 wt.% of n-octadecane and 20 wt.% of n-octadecane were chosen due to NPCEs made with 10 wt.% 140 

of n-octadecane and 20 wt.% of n-octadecane have appropriate viscosity for using as the heat transfer 141 

and energy storage fluids. Five kinds of NPCEs containing 10 wt% n-octadecane with different 142 

concentrations of MWCNTs (0 wt%, 0.1 wt%, 0.25 wt%, 0.5 wt%, and 1.0 wt%) were prepared. 143 

Secondly, three kinds of NPCEs with 10 wt% n-octadecane containing 0.1 wt% MWCNTs with 144 

various concentrations of octadecanol (0.25 wt%, 0.5 wt% and1.0 wt%) were prepared. As the 145 

viscosity of 20 wt% NPCE is high, the dispersing of 0.25 wt% in the NPCE is difficult. Therefore, 146 

only 20 wt% NPCE containing 0.1wt% MWCNTs with various concentrations of octadecanol (0 wt%, 147 

0.25 wt%, 0.5 wt%, and 1.0 wt%) were prepared. Table 1 shows all the samples prepared.    148 

For the synthesis of 10 wt% NPCEs with 0.1 wt% MWCNTs and 0.25 wt% octadecanol, the surfactant 149 

solution was prepared by adding 2 wt% SDS into deionized water and stirring by a magnetic agitator 150 

(MS7-H550-S, AB Scientific Co., Ltd) at 50 oC for 15 minutes. 0.1 wt% of MWCNTs was mixed 151 

with the solution and stirring continued for another 15 minutes. In another beaker, 0.25 wt% 152 

octadecanol was dissolved in 10 wt% n-octadecane at 50 °C. The solution was mixed into the first 153 

beaker and stirred for 10 minutes at 50 °C. Then the mixed solution was placed in the ultrasonic water 154 
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bath for 30 minutes. Finally, the mixed solution was sonicated with an ultrasonic processor (Type 155 

JY92-IIN, LNB Instrument, Shanghai) at 70 % amplitude for 30 minutes. Fig.1 shows detailed 156 

synthesis process of PCM nanoemulsions.   157 

 158 

Fig.1. Schematic diagram of the synthesis process. 159 

Table 1. Nanoemulsions prepared. 160 

Sample n-octadecane SDS MWCNTs octadecanol DI water 

1 5g 0.5g 0g 0g 44.5g 

2 5g 0.5g 0.05g 0g 44.45g 

3 5g 0.5g 0.125g 0g 44.375g 

4 5g 0.5g 0.25g 0g 44.25g 

5 5g 0.5g 0.5g 0g 44g 

6 5g 0.5g 0.05g 0.125g 44.325g 

7 5g 0.5g 0.05g 0.25g 44.2g 

8 5g 0.5g 0.05g 0.5g 43.95g 

9 10g 1g 0g 0g 39g 

10 10g 1g 0.05g 0g 38.95g 

11 10g 1g 0.05g 0.125g 38.825g 

12 10g 1g 0.05g 0.25g 38.7g 

13 10g 1g 0.05g 0.5g 38.45g 

 161 

2.3 Characterization of MWCNTs 162 

The characterization experiments of MWCNTs were carried out using field emission environment 163 

scanning electron microscope（FESEM-Quanta FEG 450）and field emission transmission electron 164 
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microscope（HRTEM-Tecnai G2 F30）. 165 

2.4. Particle size analysis of PCM nanoemulsions 166 

Dynamic light scattering (DLS) technique was employed to measure the particle size distribution and 167 

particle dispersion index (PDI) of NPCEs with a particle size analyser (Nano-Zeta sizer, Malvern 168 

Instruments). The accuracy of the mean droplet size d50 is ±1 %. The NPCE was diluted with 169 

deionised water at a proportion of 1:50 in a 20ml glass cuvette, and the measurement sensitivity is 0.1 170 

mg/mL.  171 

2.5. Thermal properties of PCM nanoemulsions 172 

The thermal properties of NPCEs was determined using DSC (200F3 Maia, NETZSCH), and the DSC 173 

was calibrated prior to tests. 10-20 mg of emulsion was prepared in an aluminium crucible. The 174 

sample was measured at a heating/cooling rate of 2 K/min in nitrogen atmosphere. In order to ensure 175 

the accuracy of the measurements, all samples were tested three times. The melting/crystallization 176 

heat and melting/crystallization point can be obtained using the DSC analysis program and the DSC 177 

test results were further analysed and mapped using OriginPro9. 178 

The thermal conductivity of NPCEs was measured using thermal conductivity instrument (DZDR-S, 179 

NANJING DAZHAN). The specified accuracy of the instrument is ±3 % depending on the sample 180 

size, conductivity and reproducibility. The thermal conductivity of all samples was measured when 181 

PCM was in solid and liquid states. Five measurements were taken for each sample and each 182 

measurement had an interval of 5 minutes. The mean values of those measurements were employed. 183 

 184 

3. Results and discussion 185 

3.1. Microstructure analysis of MWCNTs  186 
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Fig.2. SEM image of MWCNTs. 

 

Fig.3. TEM image of MWCNTs. 

Figure 2 and Figure 3 show SEM and TEM images of MWCNTs, respectively, where the internal 187 

structure of carbon nanotubes can be seen clearly. All carbon nanotubes have multi-layer walls with 188 

an inner diameter of about three nanometers. The outer diameter is about 10 nanometers. The intrinsic 189 

thermal conductivity of MWCNTs is as high as 3000 W/(M·K). Low density and high specific surface 190 

area make it the best choice to enhance the thermal properties of PCM in the application of weight 191 

and volume limitation. In addition, the thermal conductivity of MWCNTs is higher than that of some 192 

conventional materials [33]. 193 

3.2. Particle size analysis of NPCEs 194 

 195 
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 196 

 197 

 198 

Fig.4. (a) Particle size distribution of 10 wt% NPCE, (b) Particle size distribution of 10 wt% NPCE 199 

with 0.1 wt% MWCNTs, (c) Particle size distribution of 10 wt% NPCE after three month settlement, 200 

and (d) Particle size distribution of 10 wt% NPCE with 0.1wt% MWCNTs after three month 201 

settlement. 202 

Figure 4 shows the particle size distribution of 10 wt% NPCE with 0.1 wt% MWCNTs and 10 wt% 203 
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NPCE without MWCNTs before and after three months. Three curves of different colours suggest 204 

that three measurements of the same sample are very close to each other. The particle size distribution 205 

of 10 wt% NPCE is between 70 nm and 220 nm as shown in Fig. 4(a). In addition, the results show 206 

that the average Z particle size of 10 wt% NPCE is 128.2 nm, and the average value of PDI is 0.010. 207 

Fig. 4(c) is a diagram of 10 wt% NPCE particle size after three-month settlement. The results show 208 

that its particle size distribution is between 78~255nm, the average Z particle size is 132.5 nm and 209 

the average value of PDI is 0.106. Fig. 4(b) shows the particle size of 10 wt% NPCE with 0.1wt% 210 

MWCNTs, which had just been prepared. The results suggest that the particle size distribution is 211 

between 50~255nm, the average Z particle size is 123.5 nm and the average value of PDI is 0.149. 212 

Fig. 4(d) displays the particle size of 10 wt% NPCE with 0.1 wt% MWCNTs after three-month 213 

settlement. The results suggest that the particle size distribution is between 58~255nm, the average Z 214 

particle size is 125.5 nm and the average value of PDI is 0.119. Therefore, these results demonstrated 215 

that the dispersion and stability of the emulsions were still excellent after three-month settlement and 216 

also proved that the ultrasonic water bath and ultrasonic sonication methods were effective in the 217 

experiment. A study by Asua et al. [34] showed that longer ultrasonic action time offered smaller 218 

particle size of emulsion. Compared with the emulsion prepared by ordinary stirring, the fine emulsion 219 

has very low polydispersity [35]. Therefore, the PDI index measured in this paper is of universal 220 

significance. 221 

3.3. DSC analysis of NPCEs 222 

Figure 5 shows the DSC curve of n-octadecane. The melting peak value is 30.9 oC and the 223 

crystallization peak value is 24.2 oC. Fig. 6 shows the DSC curves of 10 wt% n-octadecane with 224 

different concentrations of MWCNTs. All samples have similar shapes but different areas. All the 225 

samples display obvious supercooling phenomenon, and the crystallization temperature is about 14 ~ 226 

16 oC below the melting temperature. The supercooling degree of 10 wt% n-octadecane emulsion is 227 

14.86 oC. From the melting curve, two peaks appear gradually with the increase in CNT concentration. 228 
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When CNT is 1.0 wt%, the height of the right peak exceeds the left peak, and the supercooling degree 229 

of emulsion reaches 17.8 oC. This may be due to the simultaneous ultrasonic fragmentation of CNT 230 

and PCM. With the increase in CNT concentration, a larger part of the oil in water droplets is 231 

encapsulated with CNT particles, thereby changing the melting behaviour of the emulsion and 232 

resulting in two melting peaks. Eva et al. [36] also pointed out that the enthalpy of phase transition 233 

and melting temperature were also affected by the shape of PCM droplet. The melting peak 234 

temperature of the n-octadecane emulsion prepared is between 26 oC and 27 oC. The possible reasons 235 

are as follows: first, the emulsion with large specific surface area leads to the premelting of a large 236 

percentage of PCM; and second, the droplet size decreases the melting enthalpy. When the surfactant 237 

is dissolved in PCM, the melting temperature of PCM and the enthalpy of phase transition are 238 

decreased. This may be considered a side effect of emulsification [36].  239 

5 10 15 20 25 30 35 40 45 50 55
-4

-3

-2

-1

0

1

2

3

4

 

 

H
e
a

t 
fl

o
w

(m
W

/m
g

)

Temperature(
o
C)

 Heating

 Cooling

 240 

Fig.5. DSC curve of pure n-octadecane. 241 

There are two peaks in the crystallization curve in Fig. 6, and the solidification temperature of all 242 

emulsified samples reduced dramatically. Firstly, the heat transfer theory can be used to explain that 243 

when the local temperature reaches nucleation temperature, the first particle solidified and released 244 
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the latent heat, dispersing the heat into the emulsion and thereby inhibiting the nucleation of nearby 245 

particles. The next particle solidifies when the heat releases from the first particle solidifies. Secondly, 246 

the crystallization process of pure alkane PCMs with constant nucleation temperature is due to 247 

homogeneous nucleation or heterogeneous nucleation. The supercooling of the emulsion, however, is 248 

related to unbalanced and inadequate heterogeneous nucleation, which usually occurs in solutions 249 

containing impurity particles [35]. This phenomenon can be explained by different seed types. For 250 

small droplets, the higher peaks in the curve are due to the nucleation or homogeneous nucleation of 251 

the droplet surface. The lower peak is due to further drop of droplet size, resulting in lower nucleation 252 

temperature [36]. In addition, the minor fluctuations in the melting processes may be caused by 253 

impurities in the emulsion or by impurities brought in by the preparation process of DSC test.  254 
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 255 

Fig.6. DSC curves of 10 wt% NPCE with various mass fractions of MWCNTs. 256 

Table 2 summarizes the corresponding thermal properties of the six samples. Onset Tm, Tm and ΔHf 257 

are defined as the initial phase transition temperature, peak temperature and latent heat value, 258 

respectively. Onset Tc, Tc and ΔHc are defined as the initial phase transition temperature, peak 259 

temperature and latent heat value, respectively. The supercooling is the difference between the melting 260 
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peak temperature and the crystallizing peak temperature: ΔT= Tm– Tc. 261 

 262 

Table 2. Thermal properties of n-octadecane and 10 wt% NPCE with various mass ratios of MWCNTs. 263 

Sample name 
Onset Tm 

°C 

Onset Tc 

°C 

Tm 

°C 

Tc 

°C 

ΔHf 

J/g 

ΔHc 

J/g 

ΔT 

°C 

N-octadecane 25.4 22.7 30.9 24.2 265.72 264.72 6.7 

10wt% NPCE 25.2 10.4 26.4 11.5 18.68 22.87 14.9 

10wt% NPCE+0.1wt% MWCNTs 24.7 10.0 26.9 10.9 17.35 21.77 16.0 

10wt% NPCE+0.25wt% MWCNTs 25.0 10.5 26.4 11.3 16.34 21.06 15.1 

10wt%NPCE+0.5wt% MWCNTs 24.8 10.5 26.3 11.3 17.04 22.20 15.0 

10wt% NPCE+1.0wt% MWCNTs 28.5 10.3 28.9 11.1 19.18 12.31 17.8 

 264 

Figure 7 shows the DSC curves of 10 wt% NPCEs containing 0.1 wt% MWCNTs with various 265 

concentrations of octadecanol (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%). First of all, there are two peaks 266 

in the crystallization curve. The left peak is lower and the position and area of the peak are almost 267 

unchanged with increase in octadecanol concentration. The area of the peak on the right is larger. 268 

With increasing octadecanol concentration, its position shifts further right, crystallization temperature 269 

becomes close to the melting temperature, and supercooling degree and area decreases gradually. In 270 

the melting curve, the melting peak temperature shifted to the right and the melting heat decreased 271 

with increase in octadecanol concentration. 272 
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Fig.7. DSC curves of 10 wt% NPCE with 0.1 wt% MWCNTs and various mass fractions of 274 

octadecanol. 275 

 276 

Figure 8 shows the DSC curves of 20 wt% NPCEs containing 0.1 wt% MWCNTs with various 277 

concentrations of octadecanol (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%). The curve is similar to that of 278 

10 wt% n-octadecane emulsion, which further verifies the regularity of 10 wt% n-octadecane 279 

emulsion. As the n-octadecane concentration increases, the enthalpy values of melting heat and 280 

crystallizing heat increase about twice while the supercooling degree of the emulsion becomes lower 281 

than that of the n-octadecane emulsion with the same concentration of octadecanol. When 1.0 wt% 282 

octadecanol is added, the minimum degree of supercooling is 11 ℃. Table 3 summarizes the thermal 283 

properties of 10 wt% and 20 wt % nanoemulsions containing 0.1 wt% MWCNTs with various 284 

concentrations of octadecanol. 285 

 286 
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Fig.8. DSC curves of 20 wt% NPCE with 0.1 wt% MWCNTs and various mass fractions of 288 

octadecanol. 289 

 290 

Table 3. Thermal properties of NPCEs (10 wt% and 20 wt%) with 0.1 wt% MWCNTs and various 291 

mass ratios of octadecanol. 292 

Sample name 
Onset Tm 

(oC) 

Onset Tc 

(°C) 

Tm 

(°C) 

Tc 

(°C) 

ΔHm 

(J/g) 

ΔHc 

(J/g) 

ΔT 

(°C) 

N-octadecane 25.4 22.7 30.9 24.2 265.72 264.72 6.7 

10wt% NPCE+0.1wt% MWCNTs 24.7 10.0 26.9 10.9 17.35 21.77 16.0 

10wt% NPCE+0.1wt% MWCNTs 

+0.25 wt% octadecanol 
25.5 10.1 26.8 10.9 16.02 20.31 15.9 

10wt% NPCE+0.1wt% MWCNTs 

+0.5wt% octadecanol 
26.1 11.9 27.2 13.0 15.53 16.90 14.2 

10wt% NPCE+0.1wt% MWCNTs 

+1.0wt% octadecanol 
25.1 13.4 26.8 14.7 16.58 17.28 12.1 

20wt% NPCE+0.1wt% MWCNTs 25.3 9.4 27.7 10.4 32.48 42.18 17.3 

20wt% NPCE+0.1wt% MWCNTs 

+0.25wt% octadecanol 
25.4 9.6 27.3 10.6 30.44 37.96 16.7 

20wt% NPCE+0.1wt% MWCNTs 

+0.5wt% octadecanol 
25.2 8.1 27.5 13.7 32.98 36.38 13.8 

20wt% NPCE+0.1wt% MWCNTs 

+1.0wt% octadecanol 
25.0 14.5 27.6 16.6 35.24 34.40 11.0 

 293 

 294 
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3.4. Thermal conductivity analysis of NPCEs 295 

Figure 9a and 9b show the thermal conductivity and the corresponding reinforcement ratio of the 296 

mixed emulsion with various concentrations of MWCNTs for 10 wt% NPCE, respectively. The 297 

thermal conductivity was determined using thermal conductivity instrument. The thermal 298 

conductivity of 10 wt% n-octadecane nanoemulsion without MWCNTs is 0.5701W/(m·K) (solid state 299 

of PCMs) and 0.6176W/(m·K) (liquid state of PCMs). The thermal conductivity of nanoemulsion 300 

increases linearly with the increase in MWCNTs concentration. When the concentration of MWCNTs 301 

is 0.1 wt%, the thermal conductivities of nanoemulsion are 0.5751W/(m·K) (solid state of PCMs) and 302 

0.6204W/(m·K) (liquid state of PCMs) and the corresponding enhancement ratios are 0.88 % and 303 

0.45 %, respectively. When the concentration of MWCNTs reaches 1 wt%, the thermal conductivities 304 

of nanoemulsion reach the highest, which are 0.5923 W/(m·K) (solid state of PCMs) and 0.6443 305 

W/(m·K) (liquid state of PCMs) and the corresponding enhancement ratios are 3.89 % and 4.32 %, 306 

respectively.  307 

Grag et al. [37] indicated that the viscosity of the fluid decreases and the Brownian motion of the 308 

nanoparticles in the emulsion increases with increase in temperature, resulting in a convection effect 309 

that increases the thermal conductivity. In addition, the thermal conductivity of solid mixtures 310 

increases more under the same condition, which is due to the orderliness caused by directional 311 

crystallization [38]. However, for a liquid mixed solution, its thermal conductivity also increases, 312 

which is probably related to the arrangement of molecules, even in the liquid phase. The increase of 313 

thermal conductivity of liquid mixed solution is not obvious due to the randomness of liquid molecular 314 

orientation [39].  315 

Xue et al. [40] showed that the effective thermal conductivity of composites increased rapidly with 316 

the increase in nanotubes length. However, the effective thermal conductivity varied little when the 317 

diameter of nanotubes exceeded one order of magnitude. In this paper, it is found that with the increase 318 
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in ultrasonic dispersion time, MWCNTs can be better dispersed in phase change emulsion, thus 319 

improving the thermal conductivity of emulsion. However, this may result in changing the length and 320 

diameter of MWCNTs, thus reducing the thermal conductivity of the emulsion. The balance between 321 

the two effects will be further investigated in future work. 322 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.540

0.555

0.570

0.585

0.600

0.615

0.630

0.645

0.660

 

 

T
h

er
m

a
l 

co
n

d
u

ct
iv

it
y
(W

 m
-1
 k

-1
)

Concentrations of MWCNT (%)

 Solid state of n-octadecane

 Liquid state of n-octadecane

a

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
-1

0

1

2

3

4

5

 

 

T
h

e
r
m

a
l 

c
o

n
d

u
c
ti

v
it

y
 e

n
h

a
n

c
e
m

e
n

t(
%

)

Concentrations of MWCNT (%)

 Solid state of n-octadecane

 Liquid state of n-octadecane

b

 323 

Fig.9. (a) Thermal conductivity of 10 wt% NPCE with various concentrations of MWCNTs, 324 

(b)Thermal conductivity enhancement of 10 wt% NPCE with various concentrations of MWCNTs. 325 

 326 

Figure 10 shows the thermal conductivity of 10 wt% NPCE containing 0.1 wt% MWCNTs with 327 

various concentrations of octadecanol. It can be seen that with the increase in octadecanol 328 

concentration, the thermal conductivity of PCM in solid or liquid state decreases gradually, the 329 

thermal conductivity of water at 20 ℃ is 0.599W/(m·K), the thermal conductivity increases linearly 330 

between 0 ℃ and 100 ℃, while the thermal conductivity of octadecanol is 0.38 W/(m·K) at room 331 

temperature. Therefore, the decrease of thermal conductivity of nanoemulsion may be due to the 332 

decrease of water specific gravity with the increase in octadecanol concentration, which leads to the 333 

decrease of total thermal conductivity of nanoemulsion. When the concentration of octadecanol was 334 

0.25 wt%, the supercooling decreased by 4.4 % and the thermal conductivity of nanoemulsion 335 

increased by 0.58 % (PCM at soild state) and 0.32 % (PCM at liquid state), respectively, compared 336 

with 10 wt% n-octadecane nanoemulsion without MWCNTs. When the concentration of octadecanol 337 
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was 0.5 wt%, the supercooling decreased by 16.9 % and the thermal conductivity increased by 0.14 % 338 

and 0.05 %, respectively. When the concentration of octadecanol was 1.0 wt%, the supercooling 339 

decreased by 27. 1 % and the thermal conductivity decreased by 0.6 % and 1.1 %, respectively.  340 
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Fig.10. Thermal conductivity of 10 wt% NPCE with 0.1 wt% MWCNTs and various concentrations 342 

of octadecanol. 343 

 344 

Figure 11 shows the thermal conductivity of 20 wt% n-octadecane emulsion containing 0.1 wt% 345 

MWCNT with various concentrations of octadecanol. The thermal conductivity of n-octadecane is 346 

0.48 W/(m·K) at room temperature. The change of thermal conductivity of 10 wt% n-octadecane 347 

emulsion with various octadecanol concentrations was further verified by the change of thermal 348 

conductivity of 20 wt% n-octadecane emulsion with the increase in octadecanol concentration. 349 

Octadecanol reduces the thermal conductivity of nanoemulsion. When the concentration of 350 

octadecanol was 0.25 wt%, the supercooling decreased by 3.6 %, the thermal conductivity of 351 

nanoemulsion increased by 0.72 % (PCM at soild state) and 0.81 % (PCM at liquid state) compared 352 
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with 20 wt% n-octadecane nanoemulsion without MWCNTs, respectively. When the concentration 353 

of octadecanol is 0.5 wt%, the supercooling degree is reduced by 25.4 %, and the thermal conductivity 354 

is reduced by 0.23 % and 0.12 %, respectively. When the concentration of octadecanol was 1.0 wt%, 355 

the supercooling decreased by 36.4 % and the thermal conductivity decreased by 0.91 % and 0.84 %, 356 

respectively. 357 
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Fig.11. Thermal conductivity of 20 wt% NPCE with 0.1 wt% MWCNTs and various concentrations 359 

of octadecanol. 360 

 361 

4. Conclusion 362 

In this paper, a novel low supercooling and high thermal conductivity nano phase change emulsion 363 

with n-octadecane as PCM was successfully prepared, with MWCNTs utilised as high thermal 364 

conductivity material and octadecanol as nucleating agent. Dynamic light scattering analysis showed 365 

that the nano phase change emulsion prepared had excellent dispersion and stability. In addition, the 366 

following conclusions can be drawn from the analysis of its thermal properties: 367 
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(1) the thermal conductivity of nanoemulsion increased linearly after 10 wt% n-octadecane was added 368 

to MWCNTs and it had little effect on the enthalpy of phase transition. When the concentration of 369 

MWCNTs reached 1 wt%, the thermal conductivity of the emulsion reached the highest. The 370 

enhancement ratios of 0.5923 W/(m·K) (solid state of n-octadecane) and 0.6443 W/(m·K) (liquid 371 

state of n-octadecane) were 3.89 % and 4.32 %, respectively. The thermal conductivity of PCMs in 372 

liquid phase is higher than that in solid phase.  373 

(2) When octadecanol was added into 10 wt% n-octadecane nanoemulsion containing 0.1 wt% 374 

MWCNTs, the supercooling degree of the emulsion gradually decreased with the increase in 375 

octadecanol concentration while the thermal conductivity and the enthalpy of phase transition 376 

decreased at the same time. When the octadecanol concentration was 1 wt%, the supercooling degree 377 

of emulsion decreased by 27.1 % from 16.6 ℃ to 12.1 ℃. When 1.0 wt% octadecanol was added to 378 

the 20 wt% emulsion containing 0.1 wt% MWCNTs, the supercooling decreased by 36.4 % from 379 

17.3 ℃ to 11.0 ℃.   380 

(3) When 10 wt% and 20 wt% n-octadecane nanoemulsion containing 0.1 wt% MWCNTs was added 381 

with 0.5 wt% octadecanol as nucleating agent, the thermal conductivity increased and the 382 

supercooling degree decreased. According to above findings, the PCM nanoemulsion prepared can 383 

be employed as the heat transfer and energy storage fluids for potential application in thermal systems.  384 
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