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 58 

Abstract 59 

Large-scale brain networks are increasingly recognized as important for the generation of 60 

seizures in epilepsy. However, how a network evolves from a healthy state through the 61 

process of epileptogenesis remains unclear. To address this question, here, we study 62 

longitudinal epicranial background EEG recordings (30 electrodes, EEG free from 63 

epileptiform activity) of a mouse model of mesial temporal lobe epilepsy. We analyse 64 

functional connectivity networks and observe that over the time-course of epileptogenesis 65 

the networks become increasingly asymmetric. Furthermore, computational modelling 66 

reveals that a set of nodes, located outside of the region of initial insult, emerges as 67 

particularly important for the network dynamics. These findings are consistent with 68 

experimental observations, thus demonstrating that ictogenic mechanisms can be 69 

revealed on the EEG, that computational models can be used to monitor unfolding 70 

epileptogenesis and that both the primary focus and epileptic network play a role in 71 

epileptogenesis. 72 

 73 

Significance Statement 74 

We provide the first description of how functional connectivity and network dynamics 75 

inferred from background EEG evolve during epileptogenesis. We focus on background 76 

EEG because it allows for direct comparison of functional networks before and after 77 

experimental intervention. We show that network dynamics inferred by means of 78 

computational modelling are different at early and later stages of epileptogenesis. Our 79 

findings provide further support for clinical potential of background EEG. 80 

 81 

Introduction 82 

Epilepsy is the most common chronic brain disorder affecting around 1 in 100 people 83 

worldwide and accounting for 0.6% of the global burden of disease (World Health 84 

Organization, 2019). Epilepsy is characterised by recurrent seizures. Seizure recurrence is 85 

a particularly important feature, because up to 10% of people worldwide, who do not 86 

have epilepsy, have a single seizure during their lifetime (World Health Organization, 87 

2019). In other words, although every brain is able to generate seizures, not every brain is 88 

ictogenic, i.e., prone to generating recurring seizures. 89 

 90 

Occurrences of epileptiform activity are irregular and unpredictable, but in contrast 91 

background brain activity (i.e. periods of activity that are free from obvious epileptiform 92 

abnormalities or discharges) is readily observable There is therefore a significant research 93 

effort focused on exploiting the background activity in research and clinical practice. 94 

Recent developments in this area, based on the modern, network perspective of epilepsy, 95 

have focused on functional network analyses of background EEG and MEG. These 96 

studies have revealed altered networks in the background EEG of people with epilepsy 97 

when compared to healthy controls (Chowdhury et al., 2014; Schmidt et al., 2014; Coito 98 

et al., 2015; Niso et al., 2015; Woldman and Terry, 2015; Schmidt et al., 2016; Soriano et 99 

al., 2017) and have uncovered specific features that can help point to the location of an 100 

“epileptogenic zone” within networks (van Dellen et al., 2014; Englot et al., 2015; Nissen 101 

et al., 2017). The studies above are predominantly concerned with uncovering differences 102 

between the EEG of people with epilepsy and healthy controls, and address the question 103 

of how ictogenic mechanisms manifest in the EEG. The latter are mechanisms that lead 104 

the brain of someone with epilepsy to sporadically transition into seizures from the non-105 

seizure state. 106 

 107 
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However, a key questions in epilepsy research that remains is how does the brain 108 

becomes capable of generating recurrent seizures in the first place? This is a question of 109 

epileptogenic mechanisms, i.e. what changes does the brain undergo over longer periods 110 

of time in order to become ictogenic (Dichter, 2009; Lopes Da Silva et al., 2012; 111 

Goldberg and Coulter, 2013; Löscher et al., 2015). Various animal models can be used to 112 

explore these mechanisms. Gill et al. 2017, for example, studied a rat model of 113 

intraperitoneally administered kainic acid and catalogued the development of alterations 114 

to networks derived from fMRI (Gill et al., 2017). However, our understanding of the 115 

ways that large-scale brain dynamics evolve following local insult remains poor. 116 

 117 

To address this, we study background functional EEG networks in a well-established 118 

mouse model of temporal lobe epilepsy (Bouilleret et al., 1999; Riban et al., 2002; 119 

Arabadzisz et al., 2005; Gröticke et al., 2008; Häussler et al., 2012; Lévesque and Avoli, 120 

2013). In this model, unilateral injection of kainic acid in the dorsal hippocampus induces 121 

a status epilepticus followed by gradual neurodegeneration at the injected hippocampus 122 

(Riban et al., 2002; Arabadzisz et al., 2005). Concomitantly, spontaneous epileptiform 123 

events can be measured on the EEG at both hippocampi and, after 2-8 weeks, 124 

spontaneous and recurrent paroxysmal discharges that are reminiscent of focal and 125 

secondarily generalized seizures occur (Riban et al., 2002; Arabadzisz et al., 2005; 126 

Chauvière et al., 2012; Huneau et al., 2013; Salami et al., 2014; Sheybani et al., 2018). 127 

 128 

In the current study, we characterise functional connectivity networks before and during 129 

epileptogenesis by analysing EEG recorded before kainic acid injection as well as at 7 130 

and 28 days after the injection. Our analysis reveals that the progression of 131 

epileptogenesis is reflected in changes to background functional connectivity networks, 132 

with the focal injection leading to a disruption of network symmetry. We use a 133 

mathematical model to understand how these observed changes affect the ways that 134 

different nodes contribute to generation of epileptiform activity. Using only the 135 

background activity as input to the model, it reveals that nodes outside of the injected 136 

hippocampus become more important throughout epileptogenesis. This is in line with 137 

previous experiments that demonstrated the emergence of epileptiform activity self-138 

sustained by brain structures outside of the epileptic focus (the injected hippocampus) 139 

(Sheybani et al., 2018). These findings present a step towards a network level 140 

understanding of epileptogenesis that could be developed to aid diagnosis and treatment 141 

of epilepsy. 142 

 143 

Materials and Methods 144 

 145 

Animals and recordings 146 

We used longitudinal recordings from the experiments described in (Sheybani et al., 147 

2018). We analysed longitudinal recordings from 12 animals (adult male C57BL/6j mice, 148 

Charles River) for which data was recorded before unilateral kainic acid injection into the 149 

left hippocampus (Day 0) as well as at 7 and 28 days after injection. Of the 12 150 

longitudinal datasets 1 was excluded from all analysis due to poor quality of the data. Out 151 

of the 11 remaining datasets 4 were excluded from analysis at day 7 due to high number 152 

of artefacts and noise in the background EEG. Therefore, we used a total of 11 datasets 153 

with recordings at day 0 and day 28, with 7 of the 11 datasets also including recordings at 154 

day 7. Additionally, we analysed data recorded from 4 sham control animals (adult male 155 

C57BL/6j mice, Charles River) that were unilaterally saline injected into the left 156 

hippocampus and had epicranial EEG recorded 28 days after the injection. 157 
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 158 

The epicranial EEG was recorded at 4kHz sampling frequency using Digital Lynx SX 159 

(Neuralynx, USA). All recordings were re-referenced to the electrode average. We 160 

removed power line interference using a 50Hz (and 100Hz and 150Hz harmonics) notch 161 

filter and further band-pass filtered the data between 1 and 150 Hz using a zero-phase 162 

forward and reverse Butterworth filter of order 2. 163 

 164 

From each EEG recording, which lasted around 30 minutes, multiple 1 second 165 

background data segments were selected from periods without epileptiform activity 166 

(median number of segments 55, min 17, max 83); for data collected on days 7 and 28 the 167 

segments were at least 1 second removed from the onset of a generalised spike (GS - 168 

interictal epileptic discharges, see (Sheybani et al., 2018)). 169 

 170 

All experiments described in (Sheybani et al., 2018) were conducted in accordance with 171 

Swiss Laws on animal experimentation. 172 

 173 

Network reconstruction 174 

As in (Rummel et al., 2015; Goodfellow et al., 2016; Schmidt et al., 2016) we treated 175 

each EEG channel as recording from a single node of a network. To estimate weights of 176 

directed connections between the nodes we combined methods presented in (Rummel et 177 

al., 2015; Schmidt et al., 2016). Namely, to measure statistical interdependency between 178 

the EEG channels we employed the cross-correlation function: 179 
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 182 

In practice, we used the Matlab function: xcorr with option coeff, which normalizes 183 

the cross-correlation function in such a way that the auto-correlations at zero lag are 184 

equal to 1. 185 

 186 

To estimate the strength of the relationship between channels we used three different 187 

approaches based on the extremum of the cross-correlogram rcoeff(xi, xj)(). In the first 188 

method, we follow (Schmidt et al., 2016), and we use the maximum absolute value of the 189 

cross-correlogram, max |rcoeff(xi, xj)()|. In the second method, we followed suggestion 190 

from (Sinha et al., 2017) and use only the values of max |rcoeff(xi, xj)()| for which rcoeff(xi, 191 

xj)()>0. We refer to the matrices derived with these two methods as C
ABS

 and C
MAX

, 192 

respectively. Finally, to understand the difference between the C
ABS

 and C
MAX

 we also 193 

analysed networks estimated using the values of max |rcoeff(xi, xj)()| where rcoeff(xi, 194 

xj)()<0. We refer to the matrices from the third method as C
MIN

. 195 

 196 

The cross-correlogram rcoeff(xi, xj)() provides a natural way to infer directionality of the 197 

estimated connections. The direction of the connections is given by the sign of the lag 198 

between the two channels; with  < 0 meaning that a channel i is leading (transmitting to) 199 
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channel j. In the paper we adopted notation in which a connection from channel i to j is 200 

noted as element cij of the connectivity matrix. In this convention, extrema of the cross-201 

correlation function at  < 0 make up the elements of the matrix that are above the 202 

diagonal j > i and ones at  > 0 are below the diagonal i > j. The diagonal is equal to 0 203 

(no self-loops). 204 

 205 

We disregarded any lags longer than 250ms (1000 points) and lags shorter than 2ms (8 206 

time samples). We removed the shortest lags to address the problem of volume 207 

conduction, i.e. spurious correlations between the time series due to common sources of 208 

activity. Such activity is typically detected at very small values of lag between the time 209 

series. We chose 8 samples because they correspond to a single sample at sampling 210 

frequency 512Hz, which is a typical sampling frequency used in clinical acquisition of 211 

intracranial EEG. 212 

 213 

To increase the accuracy of estimation of the connections, we divided each 1-second data 214 

segment into 21 windows (500ms) with 25ms overlap, and we computed connectivity 215 

matrices for each window. 216 

 217 

We further checked that values of the coefficients were not solely due to the presence of 218 

dominant intrinsic channel frequencies. For each 1 second data segment we generated 219 

100 sets of univariate Iterative Amplitude Adjusted Fourier Transform (IAAFT) 220 

surrogates (Schreiber and Schmitz, 1996), each containing 30 channels, generated using 221 

10 iterations. A Wilcoxon rank sum test (with Bonferroni correction for 870 comparison) 222 

was used to test, element-wise, whether coefficients in the 21 windows had a different 223 

median than the 2100 surrogate windows. For each 1 second data segment the computed 224 

values of cross-correlation coefficients were averaged and normalized in the same way as 225 

in (Rummel et al., 2015), 226 

 227 

c
ij

=
c
ij ,data

- c
ij ,surr

1- c
ij ,surr

s
ij
.       (3) 228 

 229 

Here, cij,data is the median value of the coefficients from the data, cij,surr is the median 230 

value of the coefficients from the surrogate data, sij = 1 if the family wise error rate, 231 

FWER < 0.05 and 0 otherwise. Finally, we averaged the network topologies over all data 232 

segments in a recording and normalised the coefficients with the sum of all of the 233 

elements of the connectivity matrix. By averaging over multiple segments we aimed to 234 

estimate functional connectivity that accounts for complex bi-directional interactions 235 

between the brain regions generating the recorded activity. 236 

 237 

To ensure that the variability in the number of data segments did not affect the presented 238 

results, we excluded from analysis 5 data sets that either had a very low number of data 239 

segments or resulted in a low number of connections, see Figure 1. 240 

 241 

[Figure 1 around here] 242 

 243 

Model 244 

To model the network dynamics we followed the procedure presented in (Lopes et al., 245 

2017, 2018), i.e. we analysed to what extent removal of a single node (virtual resection 246 
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(Goodfellow et al., 2016; Khambhati et al., 2016)) affects activity of the network that on 247 

average spends half of the time in the active state. The simulations proceeded as follows: 248 

 249 

1.) The dynamics of each node was modelled using the theta model (Ermentrout and 250 

Kopell, 1986), which has been shown to well approximate the predictions of neural 251 

mass models close to a saddle-node on invariant circle bifurcation (Lopes et al., 252 

2017): 253 

 254 

       (4) 255 

 256 

Here, I0 is the intrinsic model parameter, Inoise = 6 is noise intensity and  is a 257 

random number from a normal distribution with mean 0 and variance 1. We set I0 = -258 

1.2 to ensure that in the absence of noise a stable steady state existed in the system. 259 

To couple the nodes, we used the functional connectivity matrix C; with elements cij. 260 

Coupled equations have the following form (Lopes et al., 2017): 261 

 262 

   (5) 263 

 264 

Here,  is a global scaling factor of the weights cji of the incoming connections of 265 

the node i; N is the total number of nodes in the network. The *
j is the steady state of 266 

node j. Parameters I0 = -1.2 and Inoise = 6 are the same at each node. For each 267 

simulation, we used a time step of 0.01, and the duration of the simulation was 4.0e6 268 

time steps. See (Lopes et al., 2017) for more details. 269 

 270 

2.) We first estimated the value of >0 for which on average the whole network spends 271 

50% of the time in the active state. 50 was estimated in separate simulations 272 

(averaged over 10 runs with independent noise realisation). We used the same 273 

definition of the node’s active state as in (Lopes et al., 2017). To quantify activity of 274 

the whole network we use the brain network ictogenicty (BNI) which is the average 275 

time each node spends in the active state (Goodfellow et al., 2016): 276 

 277 

BNI =
1

N

timenodeispent inactivestate

duration of simulationsi=1

N

å .     (6) 278 

 279 

3.) We then removed a single node and ran simulations with exactly the same 280 

parameters; we normalised the sum in Eq. (5) with N rather than N-1 to keep the 281 

connection weights exactly the same. We measured the change in the network 282 

dynamics by comparing the time spent by the network in the active state before and 283 

after removing the node. To this end, we used node ictogenicity NI defined in 284 

(Goodfellow et al., 2016): 285 

 286 

NI
i
=

0.5- BNI
i,post

0.5
,        (7) 287 
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 288 

where BNIi,post is the BNI estimated after removing node i from the network. We 289 

repeated each simulation 10 times and took the mean value of the NI over the 10 runs 290 

with independent noise realisations. 291 

 292 

Statistical methods 293 

We used non-parametric, median based statistical methods (Kruskal-Wallis, Mann-294 

Whitney-Wilcoxon or Kolmogorov-Smirnov tests) throughout. To control for multiple 295 

comparison during network reconstruction we used the Bonferroni FWER with a 296 

significance level of 0.05 (Benjamini and Hochberg, 1995). To control for multiple 297 

comparison in the network analysis we used the Benjamini-Hochberg false discovery 298 

ratio (FDR) (Benjamini and Hochberg, 1995). Due to small sample sizes we used a 299 

significance level of 0.1 for the network analysis. We additionally quantified effect sizes 300 

using area under the receiver-operating characteristic (AUROC), which is a non-301 

parametric alternative of the common-language effect size (Hentschke and Stüttgen, 302 

2011). We used this method because it has a simple interpretation:  303 

- AUROC=0.5 means that the scores in the two groups are identical; 304 

- AUROC=0 means that all scores in the tested group are smaller than the scores of the 305 

control group; 306 

- AUROC=1 means that all scores in the tested group are larger than the scores of the 307 

control group.  308 

 309 

All presented significant results have AUROC < 0.2 or > 0.8 meaning that the overlap 310 

between the scores in the two groups is less than 20%. In other words, in 80% of the 311 

cases a random score from one group exceeds a random score from the other group 312 

(Hentschke and Stüttgen, 2011). For the non-parametric 1-way ANOVA analysis 313 

(Kruskal-Wallis test) we computed post-hoc AUROC effect sizes of differences between 314 

the groups. 315 

 316 

To visualize relationships between individual functional connectivity matrices we first 317 

quantified pairwise similarity between them by computing the Frobenius distance (Golub 318 

and Loan, 1996) for all pairs of matrices, 319 

 320 

A- B
F

= (a
ij

- b
ij
)2

j=1

m

å
i=1

n

å ,       (1) 321 

where aij and bij are the elements of matrices A and B. Next, we used classical 322 

multidimensional scaling to visualize relations captured by the similarity matrix (Borg 323 

and Groenen, 2005), using Matlab (Matlab) function cmdscale. 324 

 325 

Statistical Table 326 

[Table 2 around here] 327 

 328 

Code Accessibility 329 

Matlab scripts for the network analysis are available on request from the PS. The model 330 

is subject to copyright owned by the University of Exeter (international patent application 331 

WO/2017029505). 332 

 333 

Results 334 
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Our goal is to characterise the evolution of large-scale functional brain networks during 335 

epileptogenesis. Many measures exist to quantify functional connectivity (Wang et al., 336 

2014), each with different underlying assumptions. We begin with no a priori knowledge 337 

regarding the way in which the evolving ictogenic mechanisms of the brain may be 338 

reflected in functional connectivity. We therefore do not restrict our analysis to a 339 

particular frequency band. Considering broadband signals, a natural way to quantify 340 

functional connectivity is to study the correlation between signals. To avoid problems 341 

associated with volume conductions, we use the cross-correlation function and exclude 342 

correlations with maximum at zero lag (Christodoulakis et al., 2015). Focussing on 343 

lagged correlations also gives a natural way to build directionality into the networks. 344 

Additionally, the resulting correlations can be positive or negative and there are therefore 345 

different ways to quantify strength of interactions in the derived functional network. 346 

First, one can quantify the strength of the connection using the maximum of the absolute 347 

value of the cross-correlogram (Schmidt et al., 2014). We refer to the networks estimated 348 

with this method as C
ABS

. Second, one can neglect negative values (see e.g. reasoning 349 

presented in (Sinha et al., 2017)) and use only the values of C
ABS

 at which the cross-350 

correlogram >0. We refer to networks estimated with this method as C
MAX

. To analyse 351 

the differences between C
ABS

 and C
MAX

 one can also examine the networks derived from 352 

the values of C
ABS

 at which the cross-correlogram <0. We refer to these networks as 353 

C
MIN

. In other words, one can decompose the connectivity matrices C
ABS

 into component 354 

matrices C
MAX

 and C
MIN

. See Materials and Methods for details of the reconstruction of 355 

the connectivity matrices. In the following sections, we examine functional connectivity 356 

through epileptogenesis using these three methods. 357 

 358 

Epileptogenesis changes properties of background functional connectivity networks 359 

 360 

[Figure 2 around here] 361 

 362 

Figure 2 demonstrates the evolution of functional connectivity across the first 4 weeks of 363 

epileptogenesis for the three types of networks introduced above. The functional 364 

connectivity is described by connectivity matrices: each entry in a connectivity matrix 365 

represents a statistical relationship (in this case the extremum of cross-correlogram that 366 

occurred for non-zero lag) between EEG signals at two different electrodes. Therefore, 367 

the connectivity matrix captures the correlation pattern of a multichannel EEG signal. 368 

 369 

We quantified the differences between the connectivity matrices of individual animals 370 

across three different time points (days 0, 7 and 28) by calculating the Frobenius distance 371 

between them (see Materials and Methods for detailed description) (Borg and Groenen, 372 

2005). Using these distances to visualize the similarity between the matrices reveals that 373 

control (Day 0 and Sham) networks are different to post-injection networks (days 7 and 374 

28), since they form a distinct cluster compared to matrices derived from recordings at 375 

days 7 and 28 for each of the three measures (Fig. 2A, E, I). The clustering of points 376 

corresponding to matrices derived from recordings before and after injection visible in 377 

Fig. 2 A, E and I demonstrates that the kainic acid injection has a large and consistent 378 

effect on the correlation patterns of the epicranial EEG. The clusters, however, do not 379 

inform us about which components of the connectivity matrices have changed. 380 

 381 

To study the data on the population level, we compute median correlation matrices for 382 

each time point (median over entries cij of the connectivity matrices). Fig. 2 demonstrates 383 

that the median correlation matrices appear to progress from an initially symmetric 384 
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arrangement at day 0, to asymmetric networks post-injection (days 7 and 28). It also 385 

shows that the C
ABS

 matrices are a composition of the C
MAX

 and C
MIN

 matrices and that 386 

the C
MAX

 and C
MIN

 matrices differ from each other. A characteristic feature of the C
MAX

 387 

networks is that the connections between contralateral regions appear to be amongst the 388 

strongest connections (the top right and bottom left quadrants of the connectivity 389 

matrices in Fig. 2F-H). To quantify the redistribution of connections post-injection, we 390 

asked whether connections from each electrode to their contralateral equivalent (dark 391 

anti-diagonals of the quadrants) were among the strongest (i.e. in 5% of the strongest 392 

connections). For control networks, 38% of contralateral connections were among the 393 

strongest, whereas this percentage fell to 22% at days 7 and 28. This means that post-394 

injection, the EEG between hemispheres becomes less synchronized. We note that this 395 

trend was also observed if we considered raw as opposed to normalised connectivity 396 

matrices. Such a decrease in synchronization has previously been shown for the 397 

hippocampi (Arabadzisz et al., 2005), but not for other brain regions. In contrast, for the 398 

C
MIN

 networks the strongest connections are ipsilateral, meaning that they represent 399 

connections within a hemisphere (top left and bottom right quadrants of the connectivity 400 

matrices in Fig. 2J-L). 401 

 402 

[Figure 3 around here] 403 

 404 

To quantify the breakdown of synchronization, we calculated the degree imbalance 405 

(outdegree-indegree) of nodes in the functional connectivity networks of individual 406 

animals. Degree imbalance is an aggregated measure that quantifies the strength of 407 

connectivity for each node. Statistically, if outdegreeweighted>indegreeweighted the EEG 408 

signal recorded on a node temporally leads some of the other nodes and the node can be 409 

interpreted as a “source” of activity if not, the node lags other nodes on average and it 410 

can be considered a “sink” (outdegreeweighted<indegreeweighted). 411 

 412 

Interestingly, although network topologies are different for each of the three methods 413 

considered, the degree imbalance of the C
ABS

, C
MAX

 and C
MIN

 networks are similar. Figure 414 

3A-C, E-G and I-K show the distribution of median degree imbalance across nodes. At 415 

day 0, the configuration is symmetric, with sinks (blue nodes in Fig. 3A, E and J) 416 

predominantly in anterior and posterior regions. The maximum absolute values of the 417 

degree imbalance at day 0 are approximately two times lower than at days 7 and 28. At 418 

day 7 the degree imbalance increases, with sources located at the left posterior and the 419 

right anterior regions. This pattern persists through to day 28. Interestingly, many of the 420 

nodes that became sources are located above the left hippocampus i.e. the site of initial 421 

intrahippocampal injection (Sheybani et al., 2018). 422 

 423 

Figure 3A-C, E-G and I-K show the network toplogy of the top 5% of the strongest 424 

connections of the median connectivity matrices presented in Fig. 2. These network 425 

corroborate our observations based on the connectivity matrices: C
ABS

 matrices are a 426 

composition of the C
MAX

 and C
MIN

 matrices; the strongest connections in the C
MAX

 427 

matrices are contralateral and the strongest connections in C
MIN

 matrices are ipsilateral. 428 

Taken collectively, Fig. 2 and Fig. 3 describe changes in symmetry of the connectivity 429 

matrix and illustrate the large-scale breakdown of synchronization between right and left 430 

hemispheres that can be revealed from background EEG through epileptogenesis. 431 

 432 

In addition to analysing the degree imbalance of nodes, we analysed global properties of 433 

the functional connectivity networks; see Table 2 and Fig. 3D, H and L. For all three 434 
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types of network the same measures (Spectral norm, Variance of neighbour weighted 435 

outdegree and Degree of asymmetry) were found to be significantly different on day 0 436 

and days 7 and 28 (FDR<0.05, Kruskal-Wallis test with Benjamini-Hochberg FDR 437 

correction for 19 tested network measures - chosen to capture in a non-redundant way the 438 

most important topological and spectral properties of the networks); see Table 2 for all 439 

the analysed measures. Values of these three measures increase over the time-course of 440 

epileptogenesis; as an example, Fig. 3D, H and L illustrate increasing median of the 441 

degree of asymmetry (Li and Zhang, 2012). These changes in local and global network 442 

properties further indicate that the underlying functional connectivity pattern of 443 

background activity becomes progressively more irregular and spatially heterogeneous 444 

post injection. 445 

 446 

[Table 2 around here] 447 

 448 

Epileptogenesis changes network dynamics 449 

 450 

[Figure 4 around here] 451 

 452 

An important question is how these alterations to the pattern of functional connectivity 453 

inferred from background EEG influence the ways that nodes contribute to the generation 454 

of epileptiform dynamics. To make this mechanistic link, we studied a mathematical 455 

model of spiking dynamics placed upon the nodes of networks derived from each animal 456 

(see Material and Methods). To measure the contribution that each node in a network has 457 

to the generation of epileptiform rhythms we use “Node Ictogenicity” (NI) introduced in 458 

(Goodfellow et al., 2016) (see Material and Methods). Figure 4 shows the distribution of 459 

NI at days 0, 7 and 28 for the three types of networks. At day zero, which we use as a 460 

reference point, we see that the NI is distributed symmetrically through the network, but 461 

with slightly elevated values in frontal regions. This means that, if the network was 462 

ictogenic, nodes in frontal regions would contribute more to the generation of 463 

epileptiform dynamics. At day 7, the C
ABS

 networks, shown in Fig. 4B, displays 464 

significantly higher NI for multiple nodes in the left posterior and right anterior regions. 465 

This pattern persists at day 28 (see Fig. 4C), though nodes with elevated NI are now 466 

constrained to fewer regions. For the C
MAX

 networks, illustrated in Fig. 4E and F 467 

significant increases in NI above baseline only occur at day 28. Finally, for the C
MIN

 468 

networks, NI increases significantly at a single node, the location of which changes 469 

between days 7 and 28. On both days the node with significantly elevated NI resides 470 

within the region shown to be affected by the TTX silencing, as identified from Fig. 12B 471 

in (Sheybani et al., 2018). In the experiments described in (Sheybani et al., 2018) the 472 

kainate injected hippocampus (left) was silenced using an intrahippocampal TTX 473 

injection. After the TTX injection on day 7, interictal generalised spikes (GS) subsided. 474 

The same procedure on day 28 did not affect the frequency of occurrence of GS. 475 

 476 

Generalised spikes are interictal epileptic discharges recently reported to be a 477 

predominant EEG marker of evolving abnormal dynamics during the latent as well as 478 

chronic phase of the disease in the Kainic acid model (Sheybani et al., 2018). GS travel 479 

across the whole epileptic network and have also been observed in humans (Aarts et al., 480 

1984; Mohamed et al., 2001; Moseley et al., 2012). In (Sheybani et al., 2018) it was 481 

shown that the frequency of occurrence of GS increases during epileptogenesis and that 482 

their occurrence is correlated with increased jerky movements. Furthermore, by day 28 483 

GS no longer depend on the activity of the injected hippocampus, which was captured in 484 
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the TTX silencing experiment and evolution of the location of their onsets throughout 485 

days 0 to 28, see Fig. 6E in (Sheybani et al., 2018). At day 7, GS originate predominantly 486 

from the left and right posterior regions, which are covered by the increase in NI in left 487 

posterior regions and also node 9 in the C
ABS

 networks. However, changes in NI are also 488 

observed in anterior regions in our model results. At day 28, GS originate predominantly 489 

from the right posterior regions, which is best captured by the evolution of NI in C
MAX

 490 

networks. 491 

 492 

Discussion  493 

Network analyses are increasingly being used in order to refine diagnosis, prognosis and 494 

treatment for epilepsy (Schmidt et al., 2014; Englot et al., 2015; Niso et al., 2015; 495 

Rummel et al., 2015; Tracy and Doucet, 2015; Goodfellow et al., 2016; Schmidt et al., 496 

2016; Smith and Schevon, 2016; Lopes et al., 2017, 2018). In humans, functional 497 

connectivity derived from the background EEG are known to be altered in epilepsy. For 498 

example (Englot et al., 2015) showed that patients with focal epilepsies (temporal and 499 

neocortical) had decreased resting-state functional connectivity in multiple brain regions. 500 

In addition, people with idiopathic generalized epilepsies, as well as their first-degree 501 

relatives, have been shown to have elevated mean-degree and mean-degree variance of 502 

background functional EEG networks (Chowdhury et al., 2014). 503 

 504 

Here we have provided the first characterisation of how functional connectivity inferred 505 

from background EEG evolves during epileptogenesis. During epileptogenesis, 506 

functional connectivity networks that are initially regular and symmetric become 507 

irregular and asymmetric. This corresponds to a loss of functional connectivity between 508 

hemispheres, both in the normalised connectivity presented in Fig. 2 and if the raw 509 

connectivity is considered. These changes observed using EEG are in line with previous 510 

studies of fMRI functional connectivity derived in the tetanus toxin model (Otte et al., 511 

2012), and could be underpinned by changes in white matter tracts (Otte et al., 2012) or 512 

changes to dynamics within localized brain regions. However, it differs from the analysis 513 

of the fMRI-derived functional connectivity in the systemic kainic acid model of TLE 514 

which displayed stronger connections in comparison with control animals (Gill et al., 515 

2017). Potential reasons for these discrepancies include the intraperitoneal administration 516 

of kainic acid used in (Gill et al., 2017) causing more widespread changes in the brain 517 

tissue than intrahippocampal administration. Furthermore, functional networks reported 518 

in (Gill et al., 2017) were estimated using long duration recordings (tens of minutes vs 519 

seconds in our study) from anesthetized animals (awake head fixed animals in the current 520 

study). Additionally, neither of these previous studies addressed the process of 521 

epileptogenesis through repeated observations within the same animal. 522 

 523 

To relate our findings of altered functional connectivity to the generation of epileptiform 524 

activity, we used a mathematical model. The model allowed us to define the relative 525 

contribution of nodes to the generation of epileptiform dynamics. Our model showed that 526 

the set of nodes that are important for epileptiform dynamics evolves over 4 weeks of 527 

epileptogenesis. Two of the three different methods we used to compute functional 528 

connectivity network revealed nodes outside of the injected hippocampus that were 529 

important contributors to epileptiform dynamics. Specifically, significant changes in the 530 

NI distribution of the C
MIN

 connectivity networks (at which the cross-correlogram <0) 531 

capture the increase of NI over the injected hippocampus, which occurs 7 days after the 532 

injection and persist through to day 28. In contrast, the C
MAX

 connectivity networks (at 533 
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which the cross-correlogram >0) reveal changes in the distribution of NI only at day 28, 534 

involving multiple nodes that are located outside the injected hippocampus. 535 

 536 

We hypothesise that, C
MIN

 and C
MAX

 networks reflect two mechanisms that generate GS. 537 

The first mechanism is local and related to the initial insult (the injected hippocampus), 538 

whereas the other mechanism is distributed and is a consequence of network remodeling. 539 

Importantly, Fig. 4D-F show that the second mechanism emerges at a time subsequent to 540 

the initial insult. This interpretation is consistent with the results of (Sheybani et al., 541 

2018) in which pharmacological silencing of the injected hippocampus at day 7 stopped 542 

GS, whereas it had no effect when performed at day 28. This suggests the evolving 543 

importance of a distributed network throughout epileptogeniesis. In other words, results 544 

of the modelling suggest that the injected hippocampus is driving the epileptiform 545 

activity at day 7, whereas at day 28 the activity is driven by both the injected 546 

hippocampus as well as the wider network. 547 

 548 

Additionally, we note that changes in NI across individual nodes are directly interpretable 549 

in terms of generation of the GS and the results of the silencing experiments, while 550 

typical graph theory measures (e.g. degree imbalance or degree asymmetry) do not allow 551 

such direct interpretation. This observation provides further support for the use of 552 

mathematical models to uncover regions of the brain that are important for generating 553 

abnormal dynamics and to aid the interpretation of experimental and clinical data 554 

(Goodfellow et al., 2016; Schmidt et al., 2016; Bartolomei et al., 2017; Hebbink et al., 555 

2017; Lopes et al., 2017; Melozzi et al., 2017; Proix et al., 2017; Lopes et al., 2018). A 556 

natural next step would be to model the process of epileptogenesis itself to better 557 

understand why these changes occur, and why they occur in specific brain regions. 558 

Insights into spatial and temporal evolution of epileptogenesis could help to develop new 559 

treatments (Dichter, 2009; Lowenstein, 2009; Löscher and Brandt, 2010; Lopes Da Silva 560 

et al., 2012; Goldberg and Coulter, 2013; Löscher et al., 2015) and uncover reasons for 561 

seizure recurrence after epilepsy surgery (Mathon et al., 2017). 562 

 563 

We express caution in relating observations made in this study to human epilepsy, as we 564 

expect mouse epicranial EEG contains contributions from brain structures that are 565 

subcortical in humans (e.g. hippocampus) and therefore would contribute less to the 566 

background human EEG (Gotman, 2008; Lam et al., 2017). The recordings analysed 567 

herein are perhaps more analogous to ECoG or depth electrode recordings in humans. In 568 

this scenario, the approach of modelling activity recorded from invasive electrodes has 569 

shown promise in predicting the outcome of surgery in people with diverse “focal” 570 

epilepsies (Goodfellow et al., 2017; Lopes et al., 2017; Sinha et al., 2017; Lopes et al., 571 

2018). Our study advances our understanding of such approaches and demonstrates a 572 

framework that allows for their experimental validation. 573 

 574 
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Legends 735 

 736 

Figure 1. Criteria for excluding recordings from analysis. Number of segments selected in a 737 

recording vs number of non-zero elements in the average adjacency matrix estimated from all the 738 

segments in the recording. Each dot represents a single recording. Recordings represented by the 739 

encircled dots were excluded from the analysis. A, matrices estimated using C
ABS

; B, matrices 740 

estimated using C
MAX

; C, matrices estimated using C
MIN

. All the method produced average 741 

adjacency matrices with similar number of non-zero elements. 742 

 743 

Figure 2. Analysis of background functional connectivity reveals changes over the time 744 

course of epileptogenesis. A, E and I Individual connectivity matrices represented as dots in the 745 

first two principal dimensions of the multidimensional scaling of Frobenius distances between 746 

the individual connectivity matrices. Each dot represents a single matrix (green – day 0; yellow – 747 

day 7; red – day 28; grey – Sham control; empty symbols: circle, diamond and square represent 748 

the median of the connectivity matrices). The first three principal MDS dimensions represent 749 

around 70% of the relations encoded in the raw Frobenius distances (R
2

ABS=0.66, R
2

MAX=0.72, 750 

R
2

MIN=0.7, R is Pearson’s correlation coefficient between the Frobenius distances in the matrix 751 

space and the Euclidian distances in the reconstructed space); for clarity only the first two 752 

coordinates are plotted. B-D, F-H, J-L, Median functional connectivity matrices (indicated with 753 

empty symbols in panels A, E and I) resulting from the three different measures at different days 754 

with color-coded connection weights (Day 0 over 11 matrices, Day 7 over 6 matrices, Day 28 755 

over 8 matrices; different numbers of matrices for individual days due to quality of recordings, 756 

see Materials and Methods for details). 757 

 758 

Figure 3. Illustration of changes of network properties over the time-course of 759 

epileptogenesis. A-C, E-G, I-K, Median degree imbalance at individual nodes; blue indicates 760 

indegree>outdegree, red indicates indegree<outdegree. Value of the degree imbalance is colour 761 

and size coded, larger and darker dots indicate higher degree imbalance. Dots filled in black have 762 

a median that is significantly different than the median on day 0 (FDR<0.1, two-sided Wilcoxon-763 

Mann-Whitney test with Benjamini-Hochberg correction for 30 nodes, effect size AUROC<0.2 764 

for blue nodes or >0.8 for red nodes; exact p-values and effect sizes are presented in Extended 765 

data Figure 3-1). Grey arrows show topology of functional connectivity networks on different 766 

days illustrated using the strongest 5% of connections of the median connectivity matrices shown 767 

in Figure 2. D, H and L, boxplots showing the degree imbalance of the individual connectivity 768 

matrices. 769 

 770 

Figure 4. Illustration of changes in spatial distribution of node ictogenicity. A-C, D-F, G-I 771 

Mean values of NI. Grey arrows are the strongest 5% of connections of the median networks. 772 

Value of the NI is colour and size coded, larger and darker dots indicate higher NI. Dots filled in 773 

black have significantly higher median NI than the median on day 0 (FDR<0.1 one-sided 774 

Wilcoxon-Mann-Whitney test with Benjamini-Hochberg FDR correction for 30 nodes, effect 775 

size AUROC>0.8; exact p-values and effect sizes are presented in Extended data Figure 4-1). 776 

Shaded region in panel H and I shows nodes affected by the TTX silencing; identified from Fig. 777 

22B (Sheybani et al., 2018). 778 

 779 

Table 1. Statistical table matrix. Columns are: part of the results section, the structure of the 780 

data, statistical test, description of the significance levels. 781 

 782 

Table 2. Statistical analysis of network properties for the three kinds of connectivity 783 

matrices. Table contains values of the Benjamini-Hochberg FDR for the Kruskal-Wallis test for 784 
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comparison of medians of measures on Day 0, Day 7 and Day 28. In brackets post-hoc effect 785 

sizes quantified with AUROC: (Day 0 vs Day 7; Day 0 vs Day 28). In bold values with FDR<0.1 786 

and AUROC<0.2 or AUROC>0.8.  787 
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 788 

Figure 1. Criteria for excluding recordings from analysis. Number of segments selected in a 789 

recording vs number of non-zero elements in the average adjacency matrix estimated from all the 790 

segments in the recording. Each dot represents a single recording. Recordings represented by the 791 

encircled dots were excluded from the analysis. A, matrices estimated using C
ABS

; B, matrices 792 

estimated using C
MAX

; C, matrices estimated using C
MIN

. All the method produced average 793 

adjacency matrices with similar number of non-zero elements. 794 

  795 



 

Page 20 of 25 

 

 796 

 797 

Figure 2. Analysis of background functional connectivity reveals changes over the time 798 

course of epileptogenesis. A, E and I Individual connectivity matrices represented as dots in the 799 

first two principal dimensions of the multidimensional scaling of Frobenius distances between 800 

the individual connectivity matrices. Each dot represents a single matrix (green – day 0; yellow – 801 

day 7; red – day 28; grey – Sham control; empty symbols: circle, diamond and square represent 802 

the median of the connectivity matrices). The first three principal MDS dimensions represent 803 

around 70% of the relations encoded in the raw Frobenius distances (R
2

ABS=0.66, R
2

MAX=0.72, 804 

R
2

MIN=0.7, R is Pearson’s correlation coefficient between the Frobenius distances in the matrix 805 

space and the Euclidian distances in the reconstructed space); for clarity only the first two 806 

coordinates are plotted. B-D, F-H, J-L, Median functional connectivity matrices (indicated with 807 

empty symbols in panels A, E and I) resulting from the three different measures at different days 808 

with color-coded connection weights (Day 0 over 11 matrices, Day 7 over 6 matrices, Day 28 809 

over 8 matrices; different numbers of matrices for individual days due to quality of recordings, 810 

see Materials and Methods for details). 811 
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 813 

 814 

 815 

Figure 3. Illustration of changes of network properties over the time-course of 816 

epileptogenesis. A-C, E-G, I-K, Median degree imbalance at individual nodes; blue indicates 817 

indegree>outdegree, red indicates indegree<outdegree. Value of the degree imbalance is colour 818 

and size coded, larger and darker dots indicate higher degree imbalance. Dots filled in black have 819 

a median that is significantly different than the median on day 0 (FDR<0.1, two-sided Wilcoxon-820 

Mann-Whitney test with Benjamini-Hochberg correction for 30 nodes, effect size AUROC<0.2 821 

for blue nodes or >0.8 for red nodes; exact p-values and effect sizes are presented in Extended 822 

data Figure 3-1). Grey arrows show topology of functional connectivity networks on different 823 

days illustrated using the strongest 5% of connections of the median connectivity matrices shown 824 

in Figure 2. D, H and L, boxplots showing the degree imbalance of the individual connectivity 825 

matrices. 826 
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 828 

Figure 4. Illustration of changes in spatial distribution of node ictogenicity. A-C, D-F, G-I 829 

Mean values of NI. Grey arrows are the strongest 5% of connections of the median networks. 830 

Value of the NI is colour and size coded, larger and darker dots indicate higher NI. Dots filled in 831 

black have significantly higher median NI than the median on day 0 (FDR<0.1 one-sided 832 

Wilcoxon-Mann-Whitney test with Benjamini-Hochberg FDR correction for 30 nodes, effect 833 

size AUROC>0.8; exact p-values and effect sizes are presented in Extended data Figure 4-1). 834 

Shaded region in panel H and I shows nodes affected by the TTX silencing; identified from Fig. 835 

22B (Sheybani et al., 2018). 836 
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Table 1. Statistical table matrix. Columns are: part of the results section, the structure of the 838 

data, statistical test, description of the significance levels. 839 

 840 

RESULTS 

DATA 

STRUCTURE STATISTICAL TEST 

POWER OR CONFIDENCE 

INTERVALS 

Figure 3. 

A-C, E-G, I-K 

No assumptions 

about the 

distributions of 

the degree 

imbalance on 

each of the three 

days. 

Two-sided Wilcoxon-Mann-

Whitney test with Benjamini-

Hochberg multiple comparison/ 

false discovery ratio (FDR) 

correction for 30 nodes. 

 

Separate comparison for: Day 0 

vs. Day 7 and Day 0 and Day 

28. 

 

We use two-sided test because 

we expect to see increase and 

decrease of degree imbalance. 

Panel B: 

FDR  0.08,  

AUROC<0.2 or AUROC>0.8; 

Panel C:  

FDR  0.08,  

AUROC<0.2 or AUROC>0.8; 

Panel D:  

FDR  0.1,  

AUROC<0.2 or AUROC>0.8; 

Panel E:  

FDR  0.07,  

AUROC<0.2 or AUROC>0.8; 

Panel G:  

FDR  0.07,  

AUROC<0.2 or AUROC>0.9; 

Panel H:  

FDR  0.07,  

AUROC<0.2. or AUROC>0.9; 

See Extended data Figure 3-1 for 

values. 

 

Figure 3. 

D, H and L and 

Table 2. 

No assumptions 

about the 

distributions of 

the network 

measures. 

The Kruskal-Wallis test (non-

parametric ANOVA) with 

Benjamini-Hochberg multiple 

comparison/ false discovery 

ratio (FDR) correction for 20 

analysed measures. 

FDR and AUROC values are reported 

in the Table 2 

Figure 4. No assumptions 

about the 

distributions of 

the node 

ictogenicity on 

each of the three 

days. 

One-sided Wilcoxon-Mann-

Whitney test with Benjamini-

Hochberg multiple comparison/ 

false discovery ratio (FDR) 

correction for 30 nodes. 

 

Separate comparison for: Day 0 

vs. Day 7 and Day 0 and Day 

28. 

 

We use one-sided test because 

only test increase of node 

icotgenicity. 

Panel B: FDR  0.1, AUROC>0.8; 

Panel C: FDR  0.09, AUROC>0.8; 

Panel E: FDR  0.08, AUROC>0.8; 

Panel G: FDR  0.02, AUROC=1; 

Panel H: FDR  0.01, AUROC<0.9. 

See Extended data Figure 4-1 for 

values. 
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 842 

Table 2. Statistical analysis of network properties for the three kinds of connectivity 843 

matrices. Table contains values of the Benjamini-Hochberg FDR for the Kruskal-Wallis test for 844 

comparison of medians of measures on Day 0, Day 7 and Day 28. In brackets post-hoc effect 845 

sizes quantified with AUROC: (Day 0 vs Day 7; Day 0 vs Day 28). In bold values with FDR<0.1 846 

and AUROC<0.2 or AUROC>0.8. 847 

 848 

NAME OF THE NETWORK PROPERTY C
ABS

 C
MAX

 C
MIN

 

Mean weighted outdegree 0.69 0.83 0.5 

Variance of weighted outdegree 0.055 

(0.23; 0.13) 

0.035 

(0.17; 0.13) 

0.12 

Spectral norm 0.0099 

(0; 0.091) 

0.0083 

(0.061; 0.046) 

0.026 

(0.11; 0.13) 

Frobenius norm 0.42 0.47 0.27 

Mean neighbour weighted outdegree 0.21 0.24 0.4 

Variance of neighbour weighted outdegree 0.0099 

(0.03; 0.079) 

0.0131 

(0.076; 0.1) 

0.0233 

(0.71; 0.89) 

Mean betweenness 0.20 0.75 0.66 

Variance of betweenness 0.098 

(0.12; 0.48) 

0.44 0.3 

Mean pagerank 0.4 0.96 0.58 

Variance of pagerank 0.17 0.47 0.27 

Mean length of the shortest path between two nodes 0.29 0.47 0.4 

Variance of length of the shortest paths 0.17 0.8 0.4 

Mean harmonic closeness centrality 0.29 0.47 0.4 

Variance of harmonic closeness centrality 0.068 

(0.91; 0.62) 

0.2 0.5 

Assortative mixing (Pearson’s total weighted degree 

correlation) 

0.17 0.66 0.058 

S-metric - sum of the product of nodal degrees across edges 0.81 0.5 0.78 

Degree of asymmetry – largest eigenvalue of the skew-

symmetric part of the Laplacian of a directed graph (Li and 

Zhang, 2012). 

0.026 

(0.14; 0.1) 

0.011 

(0.21; 0) 

0.026 

(0.26; 0.045) 

Mean spectrum – mean of eigenvalues of symmetric part of the 

Laplacian matrix of the directed graph (Li and Zhang, 2012). 

0.74 0.8 0.14 

Variance of spectrum – variance of eigenvalues of symmetric 

part of the Laplacian matrix of the directed graph (Li and 

Zhang, 2012). 

0.4 0.25 0.88 

Maximum of spectrum – largest eigenvalue of symmetric part 

of the Laplacian matrix of the directed graph (Li and Zhang, 

2012). 

0.17 0.25 0.76 
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Extended data 857 

 858 

 859 

 860 

Figure 3-1. Detailed illustration of changes in spatial distribution of degree imbalance (DI). 861 

A-C Boxplots of distributions of DI values on each node on Day 0 (green), Day 7 (yellow) and 862 

Day 28 (Red). Shaded yellow bar indicates significant difference between Day 0 and Day 7. 863 

Shaded red bar indicates significant difference between Day 0 and Day 28. Text labels are: first 864 

row FDR, second row (AUROC) for comparison of Day 0 and Day 28; third row FDR and 865 

fourth row (AUROC) for comparison of Day 0 and Day 7. Two-sided Wilcoxon-Mann-Whitney 866 

test with Benjamini-Hochberg FDR correction for 30 nodes, effect size measured as AUROC. 867 

 868 

 869 

 870 

Figure 4-1. Detailed illustration of changes in spatial distribution of node ictogenicity (NI). 871 

A-C Boxplots of distributions of NI values on each node on Day 0 (green), Day 7 (yellow) and 872 

Day 28 (Red). Shaded yellow bar indicates significant difference between Day 0 and Day 7. 873 

Shaded red bar indicates significant difference between Day 0 and Day 28. Text labels are: first 874 

row FDR, second row (AUROC) for comparison of Day 0 and Day 28; third row FDR and 875 

fourth row (AUROC) for comparison of Day 0 and Day 7. One-sided Wilcoxon-Mann-Whitney 876 

test with Benjamini-Hochberg FDR correction for 30 nodes, effect size measured as AUROC. 877 
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