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Abstract: Understanding the interaction of light with a highly scattering material is essential for
optical microscopy of optically thick and heterogeneous biological tissues. Ensemble-averaged
analytic solutions cannot provide more than general predictions for relatively simple cases.
Yet, biological tissues contain chiral organic molecules and many of the cells’ structures are
birefringent, a property exploited by polarization microscopy for label-free imaging. Solving
Maxwell’s equations in such materials is a notoriously hard problem. Here we present an efficient
method to determine the propagation of electro-magnetic waves in arbitrary anisotropic materials.
We demonstrate how the algorithm enables large scale calculations of the scattered light field in
complex birefringent materials, chiral media, and even materials with a negative refractive index.
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1. Introduction

Determining how light propagates in heterogeneous media is a notoriously hard problem [1].
Unless the system of interest has symmetries such as periodicity [2], one needs to solve the
Maxwell equations ab initio with appropriate boundary conditions. While this may be feasible
for relatively simple systems such as Mie scattering [3], multiple scattering of light can lead
to many subtle effects [4–6]. The fractal propagation method can simulate light in biological
tissues [7]; however, calculating the exact light field distribution in arbitrary large heterogeneous
materials remains out of reach for the current generation of computational methods [1]. A further
complication is that the media are generally not isotropic, meaning that the refractive index is
different depending on the orientation of the field polarization. Such birefringence is common
in many samples of interest such as TiO2, the lipid bilayer cell-membrane [8–10], or muscle
fibers [11]. Indeed, birefringence is a valuable, label-free, contrast method [11–16]. Furthermore,
biological tissues contain chiral organic molecules such as glucose, a property that is linked to
the electro-magnetic coupling and cannot be modeled by anisotropic permittivity. In this paper
we investigate the application of the modified Born series [17, 18] to solve Maxwell’s equations
in large heterogeneous electromagnetic media, characterized by arbitrary linear constitutive
relations.
Although finite-element and finite-difference time-domain (FDTD) methods can in principle

handle general electromagnetic problems of an arbitrary size, such methods do not scale well
to the dimensions relevant in microscopy. Only recently it has become possible to represent
the complete field distribution in computer memory for larger samples. Conventional methods
require amounts of high-speed access storage that are considerably larger. For P sample points
the finite-element method typically requires the representation of a sparse 3P × 3P matrix in
memory [19], which is then iteratively applied in order to reach the desired solution. Meanwhile,
the FDTD method requires far higher sampling densities to limit the accumulation of errors.
A quite different, and more physically meaningful iterative method is the Born series, which
calculates the scattered field, with each iteration including the effect of the next highest order
of scattering events. This approach is commonly used for the analytical theory of multiple
scattering [20,21]. When implemented numerically, all operations can be performed in a constant
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space (∝ P) and using only fast-Fourier transforms and operations on diagonal matrices. The
high computational efficiency and modest memory requirements make the Born series an ideal
candidate for solving large-scale electromagnetic problems. However, a severe limitation is that
the basic form of the series only converges in the limit of weak scattering. A modified Born
series for scalar waves, which converges for any value of the scattering strength, was recently
proposed by Osnabrugge et al. [17], and generalized to vector waves by Krüger et al. [18]. Yet,
as it stands, this approach is limited to media with an isotropic permittivity and without magnetic
properties. The modified Born series method thus excludes a large class of materials such as
biological tissues that exhibit birefringence or contain chiral organic compounds, as well as any
potential applications to metamaterial structures. Here we generalize the numerical Born series
method to arbitrary linear materials, including those with heterogeneous magnetic properties and
bi-anisotropy. The modification to the Born series is found to be notably more subtle in these
materials. We demonstrate that the algorithm enables large scale calculations of the scattered
light field in complex birefringent materials, chiral media, and even materials with negative
refractive index. Furthermore, we show that the iteration is robust to numerical errors.

To start, we review the simplest application of the Born series and its modified form, as given
in [17, 18]. At a fixed frequency ω, the electric and magnetic fields satisfy Maxwell’s equations,
∇ × E(x) = iωB(x), and ∇ × H(x) = j(x) − iωD(x), where j(x) is the electric current density
as a function of the spatial coordinate, x. In first instance, we consider the case that the medium is
isotropic and non-magnetic, and can thus be characterized in terms of a scalar relative permittivity
ε(x). This quantity connects the displacement field D and magnetic flux density B fields to the
electric field E and magnetic field H in the constitutive relations:

D(x) = ε0ε(x)E(x), and B(x) = µ0H(x) (1)

where ε0 and µ0 are the vacuum permittivity and permeability, respectively. By substituting both
constitutive relations into Maxwell’s equations we obtain the vector Helmholtz equation for the
electric field

∇ × ∇ × E(x) − k2
0ε(x)E(x) = iωµ0 j(x) = S(x), (2)

where k0 = ω/c is the free space wavenumber and S(x) represents the radiation source. In order
to solve Eq. (2) for the electric field E(x), one must invert the operator O = −k2

0ε(x) + ∇ × ∇×.
We could attempt to do this directly, representing O as a matrix in some basis of eigenfunctions
and then applying a numerical inversion algorithm. However, for moderately large systems
the direct representation and inversion of such matrix is infeasible due to memory and time
limitations. Iterative solutions are therefore required where, starting from some initial guess for
the electric field, one repeatedly applies a matrix until the result is arbitrarily close to the one
that would be obtained from a direct inversion, as for instance in finite element simulations (see
e.g. [19], Chapter 19).
The Born series [22] is a physically motivated version of this iterative procedure that was

used as a mathematical technique long before the current numerical approaches [20]. It involves
splitting the Helmholtz operator, O, into two parts O = Oi + Oh, where the inverse of the
homogeneous part Oh is known, expanding the rest as what is known as the Born series:

O−1 = (Oh +Oi)
−1 =

(
13 +O−1

h Oi

)−1
O−1

h

=

[
13 −

(
O−1

h Oi

)
+

(
O−1

h Oi

)2
+ . . .

]
O−1

h =


∞∑
p=0

(
−O−1

h Oi

)p O−1
h , (3)

where 13 is the identity operator in three-dimensional space. The operator Oh is typically
associated with propagation through a homogeneous medium, andOi is due to the inhomogeneity



of the material. We can thus understand the Born series (3) as representing a sequence of
scattering events, where as our initial guess the source S generates the same field as if the
material were homogeneous E0(x) = O−1

h S, the first iteration adds to this events where a single
scattering event takes place (proportional to O−1

h Oi), the second iteration introduces double
scattering (proportional to (O−1

h Oi)
2), and so on. The main problem with this intuitive expansion

is that in many cases it will not converge. Physically, this is connected to the existence of bound
states [22], which are due to the constructive interference of an infinite number of scattering
events. On the other hand, the mathematical origin of this divergence is simple, it is the same as
the divergence of the scalar series (1 − q)−1 =

∑∞
p=0 qp,∀q : q ∈ C: for convergence we must

require that |q | < 1. Correspondingly, the Born series, as given by (3), will only converge if all of
the eigenvalues of O−1

h Oi have a magnitude less than unity (for discussion see [22]). Although
there are cases where exact results can be deduced from this series [23], the application of the
Born series is generally restricted to weakly scattering media.

For our particular case we take the homogeneous medium ofOh to have a constant permittivity
α = αr + iαi. The inverse of this operator is given by the Green function for this medium,
O−1

h ≡
↔

G, which is the two-index object (dyadic) that is the solution to

∇ × ∇ ×
↔

G(x, x ′) − k2
0α

↔

G(x, x ′) = 13δ
(3)(x − x ′). (4)

The remaining part of the operator, O, defined by Eq. (2), is the spatially-variant difference
Oi = −k2

0(ε(x) − α) ≡ −k2
0 χ(x), where χ(x) is the isotropic susceptibility with respect to our

choice of background permittivity, α ∈ C. The Born series, as defined in (3), for the electric field
E then becomes

E = O−1S =


∞∑
p=0
(k2

0

↔

Gχ)p

↔

GS. (5)

Although we have not yet addressed the problem of convergence, the numerical advantage of this
iterative series is that it can be done in a constant space and with a combination of fast-Fourier
Transform algorithm [24]) and operations on matrices that are diagonal in their spatial indices.
To see this, we observe that χ is diagonal in its spatial indices, and that the dyadic Green function
(the solution to Eq. (4)) can be written as a product of a Fourier transform F , a diagonal matrix
(in Fourier space) and an inverse Fourier transform (App. 5.1.2)

↔

G = F −1

(
ΠT

k2 − αk2
0

−
ΠL

k2
0α

)
F (6)

whereΠT andΠL are projection matrices that separate the field in a super-position of plane waves
with transverse and longitudinal electric-components, respectively. The projection operations are
defined as the outer product of the normalized k-vectors, ΠL = k ⊗ k/‖k ‖2, and ΠT = 13 −ΠL.
The quantity in the rounded brackets can thus be seen to be a diagonal matrix in the two Fourier
space indices.

Osnabrugge et al. proved the convergence of the modified Born series for the scalar Helmholtz
equation [17], the only proviso being that the system exhibits solely dissipation (no gain), and
that the permittivity is nowhere singular. This was soon extended to the Born series (5) for
Maxwell’s equations in isotropic materials [18]. To ensure convergence, two ingenious steps were
originally taken by Osnabrugge et al. [17]. The first is to notice that the complex background
permittivity α can be chosen freely, changing the eigenvalues of the operator k2

0

↔

Gχ, without
affecting the solution. The second is that one can apply a pre-conditioner, Γ, to both sides of
recursion relation (5) as follows: ΓE = k2

0Γ
↔

GχE + Γ
↔

GS → E = (k2
0Γ

↔

Gχ + 13 − Γ)E + Γ
↔

GS.



The corresponding so-called ‘modified Born series’, which is the counterpart of series (5), is
then given by

E =


∞∑
p=0

Mp

 Γ
↔

GS, where M ≡ k2
0Γ

↔

Gχ − Γ + 13, (7)

which converges when the absolute value of the largest eigenvalue of M is less than 1. This
condition has been shown [17,18] to hold when both the preconditioning operator is given as
Γ = i

αi
χ and when the imaginary part of the background permittivity, αi, is larger than the largest

value of |∆(x)| = |ε(x) − αr |, considered over all points, x, in space. The aforementioned work
showed that this modified series can be used to very quickly compute the electromagnetic field
in large media of moderate index contrast. This result relies on the isotropy of the permittivity,
ε(x) and on the absence of any magnetic effect or chirality. In this paper we generalize this
approach to media with any permittivity or permeability, including anisotropic, magnetic, chiral,
and bi-anisotropic media. Interestingly we find that proving the convergence of the modified
series seems to be much more subtle when these additional optical effects are accounted for.
We also discuss the convergence speed and memory requirements of this approach, and present
an easy to implement algorithm to calculate electromagnetic wave propagation as we show in
Code 1 (Ref. [25]).
The paper is organized as follows. In Section 2 we describe how the modified Born series

method can be generalized to anisotropic dielectrics. The iterative algorithm is introduced and
we discuss how the preconditioner values can be calculated to ensure convergence. The algorithm
is demonstrated with the polarization-dependent propagation through homogeneous and highly
heterogeneous birefringent materials. Next, we show that the method is not limited to Hermitian
permittivity matrix-functions and that it can be extended to non-Hermitian permittivity. In
Section 3 we show how the preconditioning step of the algorithm can be adapted so that the
same iteration can be used for magnetic materials. Accounting for electric-magnetic coupling
also enables chiral, Tellegen [26], and general bi-anisotropic media. This is demonstrated with
the propagation of a linearly polarized wave of visible light through 10 mm of a highly chiral
substance. Finally we show how the method naturally handles more esoteric materials such as
a solid with a negative refractive index, thus demonstrating the capability of simulating light
propagation in such metamaterials.

2. A convergent Born series for anisotropic dielectrics

As a first step towards a Born series for arbitrary electromagnetic materials, we consider non-
magnetic birefringent materials. Optical elements such as waveplates and Wollaston prisms
are birefringent and characterized by anisotropic permittivity that cannot be represented by a
scalar function, ε(x). In this section we show how the modified Born series can be extended
to permittivity tensors. Later it will be shown that arbitrary electromagnetic problems can be
brought into the same form and solved using the iterative method introduced in this section.
To account for anisotropy, the scalar permittivity ε(x) is replaced by the 3 × 3 matrix ε (x)

function in the spatial coordinates, x. In this more general case the constitutive relation for the
electric displacement field (1) becomes

D(x) = ε0ε (x)E(x), (8)

and similarly the susceptibility becomes χ(x) = ε (x) − α13. Applying this constitutive relation
to the Maxwell equations as we did to obtain (2), the vector Helmholtz equation becomes

∇ × ∇ × E − k2
0αE(x) − k2

0χ(x)E(x) = S(x). (9)

An anisotropic analogue of the modified Born series is given by replacing the scalar preconditioner
with a matrix function, Γ(x) ≡ i

αi
χ(x), in Eq. (7). The iteration matrix can now be written as a



function of the matrix function χ(x):

M ≡
ik2

0
αi

χ
↔

Gχ −
i
αi

χ + 13. (10)

The question is whether there still exists a choice of αi such that all the eigenvalues of M have
a magnitude less than unity. To show that there is such a choice of αi we consider the numerical
radius, maxn |〈n |M |n〉|, where 〈n |n〉 = 1. Evidently the numerical radius will always be at least
as large as the largest magnitude eigenvalue of M and thus we can enforce the convergence of the
series (7) through the requirement

max
n

�����
〈
n

����� ik2
0
αi

χ
↔

Gχ −
i
αi

χ + 13

����� n
〉����� < 1 (11)

In Appendix 5.2 it is shown that this requirement can be satisfied by choosing αi to be larger
than ‖∆‖, the largest singular value of ∆ ≡ ε − αr13, under the conditions that the eigenvectors
of ∆ are orthogonal and that the material is free of gain with non-zero losses. Orthogonal
eigenvectors are common in practice, e.g. when there is no point with both anisotropic absorption
and birefringence in the material. In what follows we further show that a sufficiently large value
of αi can ensure convergence for any material with non-zero losses.
The dyadic Green function,

↔

G, in convergence condition (11) can be written in terms of the
identity and a unitary operator U as

↔

G ≡ (U − 13)/(2ik2
0αi) as discussed in Appendix 5.1.2.

Condition (11) can then be rewritten using the triangle inequality |a + b| ≤ |a| + |b| as

max
n

[��〈n |∆2 − α2
i 13 |n〉

�� + |〈n |χUχ | n〉|
]

< 2α2
i (12)

where ∆ = χ + iαi13. To simplify this condition further we apply the Cauchy-Schwarz inequality��〈χ†n |Uχn〉
�� ≤ √

〈χ†n |χ†n〉〈Uχn |Uχn〉 = ‖χn‖‖χ†n‖ to remove the unitary operator from
the second term, followed by the inequality ‖χn‖‖χ†n‖ ≤ 1

2
(
‖χn‖2 + ‖χ†n‖2

)
. Substituting

χ = ∆ − iαi13, and simplifying using ∆ + ∆† = 2∆i, yields the stricter inequality:��〈n |∆2 − α2
i 13 |n〉

��+ 〈
n

����12 (∆∆† + ∆†∆)���� n〉
−2αi〈n |∆i |n〉+α

2
i < 2α2

i ∀n : ‖n‖ = 1, (13)

where ∆ = ∆r + i∆i, with ∆r and ∆i Hermitian matrices that depend respectively on the reactive
and dissipative response of the material. As a final step we eliminate α2

i from both sides, rewrite
∆2 = (1/2)(∆∆† + ∆†∆) + i(∆∆i + ∆i∆), and apply the triangle inequality to split the first term����〈n ����12 (

∆∆† + ∆†∆
)���� n〉

− α2
i

���� + |〈n |∆∆i + ∆i∆| n〉|

+

〈
n

����12 (
∆∆† + ∆†∆

)���� n〉
− 2αi〈n |∆i |n〉 < α2

i ∀n : ‖n‖ = 1.
(14)

We are now in a position to give a condition for the convergence of our modified Born series.
Assuming that ∆i is a positive definite operator everywhere, equivalent to assuming a gain-free
material that exhibits a dissipative response throughout space, we can restrict αi to be greater
than the larger of the following two quantities:

A1 =max
n

√
1
2

〈
n
��∆∆† + ∆†∆�� n〉

; A2 = max
n

|〈n |∆∆i + ∆i∆|n〉|

2〈n |∆i |n〉
. (15)



Fig. 1. (a) Demonstration of anisotropic permittivity. Diagonally polarized light propagates
from left to right through a calcite crystal (light gray box) cut at 45◦ with respect to its
optic axis (indicated by the arrow). It can be seen that, as expected, the in-plane polarized
extraordinary ray (e, magenta) is displaced from the ray that is polarized perpendicular to
the plane (o, cyan). Some interference can be noticed between the incoming wave and its
back-reflection at both the entrance and exit surface of the crystal. (b-e) A circularly polarized
Gaussian beam incident from the left on a birefringent vaterite (CaCO3) microrod with a
diameter of 20µm forms a complex scattering pattern instead of a single focus. Although
the volume is homogeneous CaCO3, complex, seemingly random, scattering occurs due to
its subdivision in crystals of approximately 1µm in cross-section for which the fast axis
is oriented randomly with angles θ shown as hue in panel (e). Panels (b-d) show the field
components Ex , Ey , and Ez , respectively. The darkness and hue indicate the field amplitude
and phase, respectively, as indicated by the legend in panel (e). An overlaid gray grid outlines
the crystal areas for reference, and the inset shows a 4× magnified detail of the field at the
exit surface.

If the convergence condition αi > max{A1, A2}, is fulfilled then the inequality (14) will be
satisfied, and the modified Born series will converge for the anisotropic medium in question.

For this particular bound it is very important that∆i is positive definite, rather than non-negative.
If ∆i has a kernel containing even one eigenvector |n0〉 then for vectors |n〉 = |n0〉 + η |n⊥〉, A2
diverges as ∼ 1/η, as η → 0. This is because A2 is the analogue of a weak value [27] of ∆r,i
with respect to the two vectors |n〉 and ∆i |n〉, a value which is well known to potentially lie
outside the spectrum of the operator when the two vectors are close to orthogonal (so-called
superweak values [28]). In Appendix 5.2.2 it is shown that when ∆i has an empty kernel, no
such divergence arises, and the Born series can be made to converge for any anisotropic medium.
As it stands, it is difficult to make use of condition αi > max{A1, A2}, because the value of A2
cannot be readily estimated. Extensive numerical tests (App. 5.2.2) have also indicate the larges
singular value ‖∆‖ is a tighter bound for αi that is valid for general gain-free materials, although
we have not been able to show this analytically. As a diverging series is straightforward to detect,
we have set αi = ‖∆‖ in all our simulations. Note that in the limiting case where the medium
is isotropic and non-magnetic, ∆ = ∆13, and the basis |n〉 is the position basis, convergence
condition αi > max{A1, A2} reduces to αi > maxx |∆(x)|. This reproduces the convergence
condition found by both Osnabrugge et al. [17] and Krüger et al. [18].
To demonstrate that this series can be used to calculate the propagation of light through an

anisotropic material, we consider a birefringent crystal. Perhaps the most common example is
calcite (CaCO3, no = 2.776, ne = 2.219 at λ = 500 nm), which splits an incident beam into
two orthogonally-polarized beams that travel along different paths [29]. Fig. 1(a) shows that the
modified Born series reproduces this effect for a circularly-polarized Gaussian beam (wavelength



of 500 nm) traversing the crystal from left to right. The crystal displaces the extra-ordinary
polarization laterally (e, magenta), while the ordinary-polarized component (o, cyan) travels
along the original optical axis unaffected by the anisotropy.
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Fig. 2. Demonstration of non-Hermitian anisotropy. An Ex-polarized wave traverses two
(a,c,e), or three (b,d,f), polarizers from the left to the right. The first and the last polarizer
are in cross-diagonal-orientation, preventing transmission through the first system shown in
(a). The intensity (black line) and the real part of the electric field (green line) are shown for
the vertical and horizontal components in (c,e) and (d,f), respectively. Arbitrary units are
used so that the maximum value of the intensity and field match for clarity of display.

This method of computing the solution to Maxwell’s equation is quite unusual compared to,
for instance, a finite difference calculation. Firstly, each iteration can be performed in constant
space and involves only a product of diagonal matrices and Fourier transforms, both of which
have relatively low computational demands. Secondly, and perhaps even more interesting, the
iterative corrections to the field predominantly depend on the local field. This is because the
modified Green function,

↔

G(x, x ′), is the solution to Eq. (4), which is that for a dissipative
medium characterized by a positive αi. Both of these features can be advantageous for the
efficient simulation of wave propagation in large heterogeneous materials. To illustrate this we
simulated (λ0 = 500 nm, 2D grid, pixel spacing 31.25 nm) the electric field within and behind a
heterogeneous calcite rod of diameter 20µm made up of crystal grains with a variable diameter
of approximately 1µm and with a random orientation (Figs. 1(b)-1(e)). An isotropic material
would have focused both polarizations. Instead, a highly irregular speckle pattern can be seen
to emerge, elongated along its propagation direction. The insets show close-ups of the high
irregularity in the three field-components as the beam exits at the CaCO3-air interface.
In the case of ordinary birefringence, the 3 × 3-matrix that represents the permittivity at a

specific point in space is Hermitian. More general materials may have a permittivity that is
non-Hermitian. To illustrate the application of the modified Born series to lossy anisotropic
media we calculated the transmission through the simplest such system: an infinitely wide
(one-dimensional, grid spacing ∆z = 15.625 nm) absorbing polarizer. Fig. 2 shows a series of
polarizers with varying alignment and an anisotropic extinction coefficient of κ = 0.1. For clarity,
back reflections are avoided by setting the refractive index of the polarizers to the same value
as that of the embedding medium (n = 1). The two geometries shown are two cross-polarizers
(a,c,e), the second of which blocks all transmission. When a third polarizer is inserted in-between
the same two polarizers, and with its transmission axis at 45◦ to the first two polarization axes
(b,d,f), this results in a non-zero transmission in agreement with Malus’ law.



Algorithm 1 shows the pseudo code to calculate the electric field in anisotropic non-magnetic
materials. Before starting the iteration loop, the algorithm must choose a background permittivity,
α that will lead to a fast convergence. This is done by numerically finding the value αr that
minimizes the largest singular value of ∆ = ε (x) − αr13, using the Nelder-Mead algorithm [30].
The imaginary part of the background permittivity, αi, is then set to equal the minimized upper
bound for the singular value ‖∆‖. Although the strict equality does not necessarily guarantee
convergence, in practice we have never encountered divergence. It should be noted that calculating
the largest singular value is impractical for large problems, so an upper bound must be calculated
instead and αi will likely be larger than the largest singular value, ‖∆‖. For good measure, the
complete algorithm (2) presented in Appendix 5.1, does include a check for divergence, though
in practice it has never been encountered. The algorithms’ description is followed by a discussion
of its efficiency, robustness to errors, and the issues of sampling and aliasing.
The iteration loop starts on line 6 and repeats until the condition on line 9 is met. In each

loop a correction term, ∆E, is calculated for the electric field estimate, E. Unless divergence
is detected, the correction term is added to the current electric field estimate. In the unlikely
event that divergence is detected, the current iteration is repeated for a more conservative, larger,
imaginary value for the permittivity bias, αi. This procedure is repeated until the correction term
becomes smaller than a preset tolerance, rmax. Alternative stopping criteria may be considered to
improve the algorithm’s performance [18].

Algorithm 1 Calculation of the electric field in materials with anisotropic permittivity, ε .
1: function SolveAnisotropic(∆r, j, ε,E0 = 0,rmax)
2: αr ← argmin

αr

[‖ε − 13αr‖] ∀αr ∈ R

3: αi ← ‖ε − 13αr‖

4: χ ← ε − (αr + iαi) 13
5: E ← E0
6: repeat
7: ∆E ← i

αi
χ

[↔
G ∗

(
k2

0χE + S
)
− E

]
8: E ← E + ∆E
9: until ‖∆E‖ < rmax ‖E‖
10: return E
11: end function

3. Magnetic and chiral materials

As it stands, Algorithm 1 can only be used on non-magnetic materials. However, the precondi-
tioning step can be generalized to account for general magnetic media, without requiring changes
to the iteration loop. A general algorithm is given in Appendix 5.1.1, which makes use of a
generalized susceptibility, χ, to account for permeability and any electro-magnetic coupling
constants.

The constitutive relations for general linear electromagnetic materials are given by (e.g. [31]):

D(x) = ε0ε (x)E(x) +
1
c
ξ(x)H(x) (16)

B(x) = µ0µ(x)H(x) +
1
c
ζ (x)E(x). (17)

Here both the permittivity ε (x) and permeability, µ(x), are tensors that depend on the position,
x. The additional coupling terms ξ(x) and ζ (x) enable arbitrary linear interactions between the
electric and magnetic components, which are commonplace in—for instance—metamaterials [32].



The coupling tensors ξ(x) and ζ (x) are also essential to model chiral materials [33], and non-
reciprocal materials such as moving media [34], and Tellegen media [26].
Substituting Eqs. (16) and (17) into the Maxwell equations and eliminating the magnetic

field, H = (iωµ0)
−1µ−1[∇ × E − ik0ζE], leads to the same form of vector Helmholtz Eq. (9).

Moreover, it can be noted that both sides of Eq. (9) can be divided by any positive constant,
β ∈ R≥0. Eq. (9) thus remains valid for general materials when the source and susceptibility are
generalized as

S ≡ iωµ0β
−1 j (18)

χ ≡
ε

β
−

1
β
ξµ−1ζ − 13α −

i
β
ξµ−1D + i

β
Dµ−1ζ +D

(
13 −

µ−1

β

)
D, (19)

where D ≡ k−1
0 ∇× is the differential operator, which calculation is discussed in Appendix 5.1.1.

For conciseness, the spatial dependency of the variables is omitted in Eqs. (18) and (19).
Note that all these operations can be implemented efficiently using fast-Fourier transforms and
diagonal-matrix multiplications. Since vector Helmholtz Eq. (9) still applies, the same iterative
procedure can be used to solve for non-magnetic anisotropic materials.
Although the modified Born series is now formally identical for these general constitutive

relations (16) and (17), to that for the anisotropic dielectric discussed in Section 2, it is important
to note that the susceptibility (19) is no longer a diagonal matrix in the position variable. This
is because it now contains the differential operatorsD. Although this affects neither the form
of the modified Born series (i.e. as a product of diagonal matrices and Fourier transforms), nor
the proof of its convergence (which did not make any assumptions about the form of χ), it can
make the convergence of the series less rapid. This is because the largest singular value of D
has a magnitude, π/(k0∆r), which is inversely dependent on the grid spacing, ∆r. Therefore,
the required number of iterations increases quadratically with the density of the sampling grid.
The impact on the convergence rate is highly dependent on the permeability distribution, and
for magnetic materials with a highly variable permeability distribution such as metamaterials,
the propagation of field corrections may be on the order of a wavelength or less per iteration.
However, it follows from Eq. (19) that ‖13 − µ−1/β‖ can be minimized with an appropriate
choice of the permeability scale, β, so to keep the convergence rate at a maximum.
In principle, the optimal value of α for general materials may be determined using a similar

method as for dielectric case. Instead, albeit not critical to ensure convergence, the additional
parameter β introduced in Eqs. (18) and (19) is leveraged to maximize the convergence rate
for the magnetic case. Algorithm 2 in Appendix 5.1.1 generalizes Algorithm 1 to magnetic
materials by redefining σ̂ as a function of two variables, αr and β, and minimizing it in both
variables simultaneously. Using the usual inequalities for matrix norms [35], the function σ̂(β,αr)

determines an upper bound for the singular values of the separate terms in the sum (19), and
using the largest singular value, σD = π/(k0∆r), of the discretized differential operator, D. The
Nelder-Mead method is used to numerically minimize the product σ̂(β,α)β, which we found to
correlate well with the inverse of the convergence rate [17]. The minimization provides values
for the permeability scale, β, and the real part of the background permittivity αr. The imaginary
part, αi, is set to σ̂(β,α), an upper bound estimate for the largest singular value of ∆ = χ + iαi13.
At optical frequencies, it is a common approximation to assume that the permeability, µ,

equals µ013 in the entire volume [34,36]. However, this precludes calculations with a broad class
of materials of theoretical and practical interest. Maxwell’s equations are scale invariant so that
the same solutions are obtained when the spatial and temporal frequencies, k and ω, are scaled
by the same factor. This observation lies at the basis of impedance matching, transformation
media [37], and many other interesting wave effects (e.g. [38]). In what follows we demonstrate
the ability to accurately model variations in permeability with various examples.
By eliminating back reflections, impedance matching ensures efficient energy transfer and
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Fig. 3. Demonstration of impedance matching (a-f), and propagation in a chiral medium
(g,h). A plane wave in free space (ε = µ = 1) with a wavelength λ0 = 500 nm enters
at x = 10µm from the left into dielectric slabs of thickness 10µm, with µ = 1 (a,c) and
µ = 1.5 (b,d). In both cases the permittivity is 1.5 (green line, panels a and b). The
interference between the incoming and reflected wave is clearly visible as oscillations in
intensity (|E |2, black line, c). It can be seen that a fraction of the wave is reflected from
the slab without impedance matching (µ(z) 6∝ ε(z) in panel a). In contrast, a constant
intensity is seen in panel (d), indicative of the absence of back-reflection for the impedance
matched slab (µ ∝ ε in panel b). To facilitate comparison, both the intensity and field are
normalized to their respective maximum value in panels (c) and (d). Panels (e,f) show the
(truncated) electric field amplitude for a dipole with absorbing (e) and impedance matched
(f) boundary layers. The interference with the back reflected wave, visible as beating in
panel (e), is suppressed by the impedance matched layers as seen in panel (f). (g,h) Linear
polarization rotates upon propagation in a chiral medium with a high chirality that is 100
times of that of saturated glucose (n = 1.45, specific rotation [α]T500 nm52.7◦mL g−1dm−1,
at 909 g/L). The constitutive relations can thus be seen to be ε =

√
1.45, µ = 1, and

ξ = ζ = 52.7 909λ0
360 i = 66.53 × 10−6i. The intensity transfer between the Ex-polarization

(solid green) and Ey-polarization (dashed red) can be seen to occur several times over a
propagation distance of 10 mm (g). The local angle, θ, of the linear polarization is shown in
panel (h). Note the significantly larger length scale for panels (g) and (h).

communication through waveguides. Figs. 3(a)-3(d) introduces the concept of impedance
matching in one dimension. Figs. 3(a) and 3(b) show two samples with isotropic permittivity,



ε , and permeability, µ. Both samples contain objects (at 10µm < z < 20µm) with identical
permittivity, larger than the surrounding medium. In the left-hand panel the permeability equals
the background, while in the right-hand panel it equals the permittivity for all z. Fig. 3(b) thus
represents an object that is impedance matched with the surrounding medium. As can been seen
from Fig. 3(c), reflections from the front and back surface interfere with the incoming wave. This
is most clearly visible in the ‘beating’ in the intensity where the incoming and the reflected wave
interfere. Fig. 3(d) shows how impedance matching successfully suppresses back reflections at
both interfaces. The absence of oscillations in the field amplitude indicates an absence of back
reflections. Figs. 3(a) to 3(f) use a grid spacing of 32.25 nm.
Impedance matching also has important practical applications for simulations of infinite

volumes in a finite space. Fig. 3(e) shows the electric dipole field in a box with regular absorbing
boundaries and homogeneous permeability. As in the one-dimensional case, plotted in Figs. 3(a)
and 3(c), significant reflections can be noted from the absorbing boundaries. Fig. 3(f) shows a
dipole in a box with impedance matched absorbing boundaries. Although the boundaries both
have a linearly varying permittivity from 1 to 1 + 1i and an identical thickness of 4µm, it is clear
from Fig. 3(f) that impedance matching suppresses the interfering reflections.
Since the constitutive relations (16) and (17) include the electric-magnetic coupling tensors,

ζ and ξ , one can also use the modified Born series to treat bi-isotropic and more generally
bi-anisotropic media. Many organic molecules such as glucose have a chiral asymmetry that leads
to bi-isotropy. This chirality causes a rotation of linear polarization around the axis of propagation.
As a second example of our generalized approach, Figs. 3(g) and 3(h) show simulations where
linearly polarized light is slowly rotated in a chiral solution (∆z = 86.2 nm). As the rotation takes
several millimeters to complete, the calculation was performed for a wavelength of 344.8 nm in
glucose and over a propagation length of 10 mm.

As a final example we consider negative index materials. Simultaneously negative values for ε
and µ can be obtained by engineering a material at the sub-wavelength scale. Such materials
are characterized by a negative refractive index [39,40]. The general algorithm presented here
naturally handles negative values for both the permittivity, ε , and the permeability, µ. Fig. 4
demonstrates this for a block of transparent material, yet with a negative refractive index of -1.5
(ε = −1.5, µ = −1; ∆x = ∆y = 125 nm). A Gaussian beam is incident at 30◦ to the surface
normal and refracts backwards into the material with an angle of −19.5◦, opposite to what is
expected from Snell’s law for regular glass. The wave appears to travel backwards from left to
right inside the metamaterial. At the exit surface the beam couples out at 30◦, again opposing
Snell’s law. Because there is no impedance matching in this case, some interference can be seen
between the incident and reflected beam in Fig. 4.

θ
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ra
d

]

0

0

π

A [a.u.]
1
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10 µm

Fig. 4. Light-wave propagation through a material with negative refractive index (ε = −1.5,
µ = −1, gray). The field amplitude (brightness) and phase (hue) are shown for a Gaussian
beam that enters the surface at 30◦ to the normal. The beam can be seen to refract at −19.5◦,
backwards, into the metamaterial at an angle opposite to that for normal glass.



4. Conclusion

We have extended the computationally efficient modified Born series [17, 18], to arbitrary linear
electromagnetic media. This enables the accurate calculation of light propagation through
birefringent, chiral, and even magnetic materials. The general algorithm is listed in Algorithm 2,
and implemented as a numerical library with working examples [25]. While there is no doubt that
finite element simulations continue to be a very versatile and effective to invert the Helmholtz
operator, the modified Born series has features that may make it more suitable for simulating
complex samples as those found in microscopy. As the finite element method, it calculates the
field due to a fixed frequency source; however, it does this through computing a series of terms
that iteratively propagate the field out from the source, not entirely unlike a time-dependent
calculation such as FDTD (see for example [17]). Yet, unlike an FDTD calculation, the solution
at a given iteration is not considered a boundary condition for the next iteration, rather an
estimate of the solution to Maxwell’s equations that is improved with each iteration. As such,
numerical errors do not accumulate over time. The modified Born series—as it was originally
intended [17]—is best suited for large scale problems with a limited range of susceptibilities.
The modest memory requirements of the anisotropic modified Born iteration make it an ideal
candidate to study light propagation in large heterogeneous tissues or materials (Appendix 5.1.3).
Our extended method allows for a wide range of material properties, including birefringence,
polarization, variable permeability, chirality, and negative refractive index. This enables it
to account for the birefringence and chiral effects of light traversing biological tissue. The
algorithm is also expected to find use in scattering studies, where laboratory experiments are
often performed on highly scattering powders that typically consist of birefringent particles such
as rutile powder (TiO2). The presented numerical method offers a bridge between approximate
analytic predictions and experiments. In addition, such large-scale problems are not exclusive to
optics and occur across wave physics, including problems involving metamaterials, to which the
modified Born series can now be applied.

5. Appendix

5.1. The algorithm

5.1.1. Detailed description of the general algorithm

The iteration loop of the algorithm is relatively short and identical for magnetic and non-magnetic
materials (Algorithm 2, lines 15-23). Only the preconditioning steps differ. The algorithm starts
by checking whether the material has magnetic properties and it determines the background
permittivity, α = αr + iαi, and if required, the permeability scale, β. This enables the definition
of the susceptibility, χ, the dyadic Green function,

↔

G, and the source distribution, S.
Before starting the iteration loop, the electric field is either initialized to all zero, or to an

approximate solution if available. On line 16, the loop starts by calculating the next term in the
series, ∆E, using the operators χ and

↔

G∗ on the source distribution, S, and the current estimate
of the field, E. The next term is added to the current estimate, E, under the condition that
the l2-norm of the new term is less than that of the previous term. Otherwise, the series must
be divergent for the current choice of the background permittivity, α, so its imaginary part is
increased by 50%. The iteration continues until the updates to the field are deemed sufficiently
small.
The susceptibility is defined by χ ≡

(
ε − ξµ−1ζ

)
/β − 13α − iξµ−1D/β + iDµ−1ζ/β +

D
(
13 − µ−1/β

)
D, where D ≡ k−1

0 ∇× = k−1
0 F

−1k ⊗ F , with ⊗ the outer product, while the
forward and inverse Fourier transforms are represented by F and F −1, respectively. Although all
operations can be represented as large matrix operations, it is more space and time efficient to
use fast-Fourier transforms and point-wise 3 × 3-dot products for each application of the operator



Algorithm 2 A function that implements the general algorithm for arbitrary materials.
1: function SolveMacroscopicMaxwell(∆r, j, ε, ξ = 0, ζ = 0, µ = 13,E0 = 0,rmax)
2: if ξ ≡ ζ ≡ 0 and µ is both isotropic and constant then . non-magnetic
3: σ̂ (β,αr) ≡ ‖ε/β − 13αr‖ . ‖·‖ is defined as the largest singular value.
4: β← 1/µ11
5: αr ← argmin

αr

[σ̂ (β,αr)] ∀αr ∈ R

6: else . magnetic
7: σ̂ (β,αr) ≡




 1
β

(
ε − ξµ−1ζ

)
− 13αr




 + σD
β

[

ξµ−1


 + 

µ−1ζ



] + σ2
D



13 − µ−1/β




. where σD = k−1
0 π/‖∆r ‖ is proportional to the highest possible spatial frequency

8: β,αr ← argmin
β,αr

[σ̂ (β,αr) |β |] ∀β ∈ R>0, αr ∈ R

9: end if
10: αi ← σ̂(β,αr)

11: α← αr + iαi

12: χ ← 1
β

(
ε − ξµ−1ζ

)
− 13α −

i
β ξµ

−1D + i
βDµ−1ζ +D

(
13 −

1
β µ
−1

)
D

13: E ← E0
14: p←∞ . the l2-norm of the previous update
15: repeat
16: ∆E ← i

αi
χ

[↔
G ∗

(
k2

0χE + S
)
− E

]
. calculate the next term in the series

17: if ‖∆E‖ < p then
18: E ← E + ∆E . update current field estimate
19: p← ‖∆E‖
20: else
21: αi ← 1.5αi . increase αi if divergence would be detected
22: end if
23: until ‖∆E‖ < rmax ‖E‖
24: return E
25: end function

χ on the electric field, E. The source is defined by S ≡ iωµ0 j/
(
βk2

0
)
. The dyadic Green’s

function,
↔

G∗, is discussed in Appendix 5.1.2 in what follows. Note that to prevent issues with
numerical precision, in the implementation the factor k−2

0 is moved from the definition of
↔

G to
that of S.

5.1.2. The dyadic Green’s function

The dyadic Green function,
↔

G, is integral to the calculation of the modified Born series:

E =


∞∑
p=0

Mp

 Γ
↔

GS, where (20)

M ≡ k2
0Γ

↔

Gχ − Γ + 13, and (21)

Γ ≡
i
αi

χ. (22)

Although well established in the literature of classical electromagnetism [41] and derived
explicitly by Krüger et al. [18], the form of the dyadic Green function presented in Eq. (6) may



not be familiar to the reader. Here we justify this equation, and show a useful representation of
the Green function in terms of a unitary operator, U .
The vector Helmholtz equation can be separated into a homogeneous, Oh , and an inhomoge-

neous part, Oi , as follows

∇ × ∇ × E(x) − k2
0ε(x)E(x) = iωµ0 j(x) (23)(

∇ × ∇ × −αk2
0

)
E − k2

0(ε − α)E = S (24)

(Oh +Oi)E = S (25)

The dyadic Green function,
↔

G, is defined as the impulse response solution to the homogeneous
part:

Oh

↔

G = ∇ × ∇ ×
↔

G(x, x ′) − k2
0α

↔

G(x, x ′) = 13δ
(3)(x − x ′) (26)

First, we take the Fourier transform of Eq. (26), recognizing that—due to the homogeneity of
the medium—

↔

G must be a function of x − x ′, and thus of a single variable k in Fourier space

↔

G(x, x ′) =

∫
d3k

(2π)3
G̃(k)eik(x−x′) (27)

or equivalently in the operator notation used in the previous sections (where integrals are
subsumed into the product)

↔

G = F −1G̃F , (28)

where G̃ is diagonal in Fourier space. Substituting expression (27) into (26) we obtain the
following equation for the Fourier components of the Green function

k × k × G̃(k) + k2
0αG̃(k) = −13. (29)

At this point we decompose the identity matrix on the right into two parts 13 = ΠT +ΠL , where

ΠL =
k ⊗ k

k2 and ΠT ≡ 13 −ΠL, (30)

and k ≡ ‖k ‖ is the l2-norm of k . These two operators can be physically understood as projecting
out the longitudinal (ΠL) and transverse (ΠT ) parts of the electromagnetic field, associated with
electrostatic and radiative contributions respectively. We similarly decompose the Green function
as G̃(k) = gL(k)ΠL + gT (k)ΠT , finding that Eq. (29) separates into two parts

k2
0αgL(k) = −1 (31)(

k2 − αk2
0

)
gT (k) = 1, (32)

from which we can deduce that the Green function is given by

↔

G(x, x ′) =

∫
d3k

(2π)3

[
ΠT

k2 − αk2
0
−
ΠL

αk2
0

]
eik(x−x′) (33)

which in our operator notation we write as

↔

G = F −1

(
ΠT

k2 − αk2
0
−
ΠL

αk2
0

)
F (34)



where the quantity in the rounded brackets must be understood as a matrix in both vector and
Fourier indices. The dependence of the bracketed quantity on a single Fourier space variable k
indicates that this matrix is diagonal in the Fourier indices, with each diagonal entry corresponding
to a different value of k . This completes the demonstration of Eq. (34).
The Green function operator (34) can be written as a linear combination of the identity

operator and a unitary operator, an observation that is instrumental in the study of the modified
Born series (20) and its convergence. This representation of the Green function relies on the
background permittivity α being chosen as a complex number. To find this representation we
first note the following identity for any complex number z

1
z
=

1
2i Im[z]

(
1 −

z∗

z

)
=

1
2i Im[z]

(
1 − e−2i z

)
, (35)

where z indicates the complex argument of z. Applying identity (35) to (34), the Green function
operator (34) is reduced to the following form

↔

G = −
1

2iαik2
0
(13 − U) (36)

where αi is the imaginary part of α and the unitary matrix U is given by

U = F −1

(
k2 − α∗k2

0

k2 − αk2
0
ΠT +

α∗

α
ΠL

)
F , (37)

where α∗ is the complex conjugate of α. The operator (37) is unitary, due to the fact that our
Fourier transform operators can be chosen such that F † = F −1, and thus

UU† = F −1

(
k2 − α∗k2

0

k2 − αk2
0
ΠT +

α∗

α
ΠL

)
FF −1

(
k2 − αk2

0

k2 − α∗k2
0
ΠT +

α

α∗
ΠL

)
F = 13, (38)

where we used the fact that ΠTΠL = 0, ΠTΠT = ΠT , and ΠLΠL = ΠL .
We note that, for numerical purposes, it is space and time-efficient to implement the dyadic

Green function operation in k-space. The resulting multiplication only requires space to store the
Fourier-transformed input, output, and Green function. The vector operations of the latter can
be implemented without constructing the full, multi-dimensional, matrix for the dyadic Green
function, though at least a scalar array, |k |2, for normalizing the k-vectors must be stored.

5.1.3. Computation and memory efficiency

The computational efficiency of the modified Born series iteration has been discussed previously
by Osnabrugge et al. [17]. In general the convergence of the iteration is approximately inversely
proportional to the range of susceptibilities in the calculation volume. The method is therefore
not efficient for calculations that involve metals. The anisotropic algorithm is no different in
this respect. It is most efficient for heterogeneous dielectric materials such as biological tissue.
However, the anisotropic version does require the addition of 3-vectors and multiplications of
3 × 3 matrices instead of scalar operations. The algorithm for anisotropic permittivity can thus
be expected to be 9 times slower than the scalar wave algorithm [17], and 3 times slower than the
isotropic vector algorithm [18]. It should also be noted that simulating inhomogeneous magnetic
properties introduces the discretized differential operator, D. This largest singular value of this
operator depends on the sampling density of the computation volume. This is equivalent to
having a large variation in optical properties in the sample, which is known to lead to significantly
slower convergence of the modified Born series [17].



The main limitation of any large scale electro-magnetic calculation is computer memory. The
advantage of the presented algorithm is that the required memory scales with the number of
sample points, P. This is important, considering that the calculation volumes of interest can
be several orders of magnitude larger than the wavelength in all three dimensions. At a very
minimum the electro-magnetic field in the calculation volume must be stored. The magnetic field
can be calculated from the electric field, hence it is sufficient to store only the electric vector field,
E. This can be done using 3P complex floating point numbers to represent a single frequency
field in the calculation volume. Each iteration calculates a correction term for the field, ∆E, thus
bringing the total to 6P.

Anisotropic permittivity can be represented by a 3 × 3 matrix for each point in space, to make
up a block-diagonal matrix of dimension 3P × 3P. However, this can be efficiently stored using
9P complex numbers, while all matrix operations, as well as the fast-Fourier transforms can be
performed in-place. It is not necessary to explicitly calculate the matrix for the dyadic Green’s
function (App. 5.1.2), though it is necessary to determine the normalization factor ‖k ‖ for all
k-vectors. This requires storage for P values.

Anisotropy in the permeability, µ, or the coupling factors, ξ and ζ , will increase the memory
requirements accordingly. If the source current S is not sparse, a further 3P complex values need
to be stored. The memory requirements are summarized in Table 1 for the case of a spatially
variant ε , and optionally, a spatially variant µ, ξ , and ζ . The memory requirements are listed in
different columns for the isotropic and the anisotropic cases. Mixed cases are omitted for brevity.

Table 1. Storage requirements for the algorithm.

spatial variability isotropic anisotropic

ε 11P 19P

ε , and µ 12P 28P

ε , µ, ξ , and ζ 14P 46P

5.1.4. Sampling and prevention of aliasing

The sampling grid size and density are important considerations for the calculation accuracy. In
Algorithm 2, every iteration requires a multiplication by the preconditioned general susceptibility,
χ, an addition of the source, S, a convolution with the dyadic Green’s function, and another
multiplication by χ. Multiplications and additions cannot increase the spatial extent of the field
E beyond the union of that of its left and right hand sides. However, the Green function has
an infinite extent and therefore also the result of its convolution with a finite field. When the
convolution operation is implemented as a multiplication in Fourier space, periodic boundary
conditions are implicitly assumed. Alternative boundary conditions can be readily simulated
by defining layers of non-transmitting material at the boundary. The sampling grid size must
therefore be sufficiently large to fit both the volume of interest and multi-cell boundaries that
adequately absorb the field.
To discuss the sampling density, we consider the Fourier transform of the iteration update

calculation:

∆˜E =
i
αi

χ̃ ∗
[
G̃

(
χ̃ ∗ Ẽ + S̃

)
− Ẽ

]
. (39)

In Fourier space, each step requires a convolution, ∗, with the Fourier transformof the susceptibility,
χ̃, followed by an addition with the Fourier transform of the source, S̃, a multiplication with the
Fourier transform of the dyadic Green’s function, G̃, and another convolution with χ̃. Although



the multiplication by G̃, tends to suppress high spatial frequencies, it does not strictly limit
the bandwidth support of the product. On the other hand, convolutions with χ̃ do extend the
bandwidth support twice per iteration. If we define Wχ, WE , and WS ≤ Wχ + WE as the
spatial-frequency band-widths of χ, E, and S, respectively; it can seen that the bandwidth of
the iteration update, ∆E, must be W∆E ≤ 2Wχ +WE . Therefore, even when both the material
properties and the source are smooth functions with a finite bandwidth, the sampling density of
the calculation must, in principle, be increased by 2Wχ with every iteration step.

In practice, the calculation must be performed on a sample grid with finite bandwidth, W , and
sample spacing, W−1. With the notable exception of superoscillations, as long as the material
properties and source field are spatially band-limited, the solution for the electric field can be
expected to be concentrated around the Ewald sphere. We found that the smoothing effect of the
Green function is generally sufficient to suppress the highest spatial frequencies that are affected
by aliasing. When we accept the approximation that the solution must be band-limited, aliasing
can be completely eliminated by low-pass filtering the field after each iteration step. To achieve
this, the calculation must be performed with a sampling band-width W ≥ Wχ +WE , in other
words, with a sampling density that is no smaller than the sum of the Nyquist rates for E and
χ. The two convolutions with χ̃ expand the support in frequency space to 2Wχ +WE , thereby
causing aliasing in the upper Wχ-part of the band. However, the lowest spatial frequencies in the
WE-band are not affected. All aliasing artefacts can thus be avoided by eliminating all but the
spatial frequencies within the lower WE-band of the iteration update, ∆E. Since the suppression
of the highest spatial frequencies can be applied at the end of each iteration as a projection onto a
subspace, it can be seen that convergence must also hold in this sub-space.

It should also be noted that the algorithm as it is presented here requires the material properties
to be sampled on a regular grid. This enables efficient convolutions using the fast-Fourier
transform and it simplifies the implementation in general. However, one could imagine structures
that require a higher sampling density in specific regions. To address such need, we envision
that the method can be extended to irregular grids by using non-uniform Fourier transforms to
perform the convolutions [42, 43].

5.1.5. Robustness to errors

Unlike time-stepped methods such as FDTD, the iteration presented here is robust to numerical
errors. The N th-correction term, ∆EN , is obtained from recursive Eq. (20):

EN = Γ
↔

G ∗ k2
0χEN−1 − ΓEN−1 + EN−1 + Γ

↔

G ∗ S (40)

⇒ ∆EN = EN − EN−1 = Γ
[↔
G ∗

(
k2

0χEN−1 + S
)
− EN−1

]
. (41)

For the initial field estimate, If we begin with a null field estimate E0 = 0, this iteration is
equivalent to the modified series (20). However, it should be noted that when E0 , 0, the
iteration corresponds to a different series, yet one that converges under the same conditions and
to the same limit:

EN = Γ
[↔
G ∗

(
k2

0χEN−1 + S
)
− EN−1

]
+ EN−1 (42)

= MEN−1 + Γ
↔

G ∗ S (43)

= MNE0 +


N−1∑
p=0

Mp

 Γ
↔

G ∗ S (44)



It can be seen that the N th-term of the series differs by MNE0 from that of series (20), and that
its corresponding residue, ‖E − EN ‖, is








∞∑
p=0

Mp

 Γ
↔

G ∗ S − MNE0 −


N−1∑
p=0

Mp

 Γ
↔

G ∗ S







 = 

MN (E − E0)


 . (45)

Provided that the absolute largest eigenvalue of M is smaller than one, the upper bound on the
residue is tightened with every iteration, independently of the choice of the initial field. The
corrections in consecutive terms prevent the accumulation of numerical errors, a common issue
with techniques such as the finite-difference time-domain method.

5.2. Convergence of the modified Born series

5.2.1. Normal susceptibility matrices

The iteration as given by Eq. (20) calculates a series of correction terms of the form MpE0.
Independently of the initial value E0, this series is guaranteed to converge when all eigenvalues
of M are less than 1 in absolute value. By substituting Eq. (36) in Eq. (21), the iteration operator
can be written as a polynomial of the preconditioner, Γ, and a unitary transformation, U:

M ≡ Γ

[
1
2
(13 − U)

i
αi

χ − 13

]
+ 13. (46)

When the preconditioner is chosen to be Γ ≡ i
αi
χ = 13 − P, the expression simplifies to

M ≡ Γ

[
1
2
(13 − U) Γ − 13

]
+ 13 =

1
2

(
13 + P2

)
−

1
2
ΓUΓ. (47)

The matrix P ≡ 13 −
i
αi
χ = − i

αi
∆ can be seen to have a positive semidefinite real part for

gain-free materials, and its largest singular value ‖P‖ < 1 when αi is chosen to be larger than the
largest singular value of ∆ ≡ χ + iαi. To prove that the eigenvalues of M are less than 1, it is
sufficient to show that its numerical radius is less than 1. Using Cauchy-Schwartz to eliminate
the unitary matrix, U , the numerical radius can be seen to be bound as follows��n†Mn

�� ≤ 1
2

��1 + n†P2n
�� + 1

2


Γ†n

 ‖Γn‖ , (48)

where Γ ≡ 13 − P has the same eigenvectors as P and χ.
Often the susceptibility, χ, can be represented by a normal matrix, which is a matrix with

orthonormal eigenvectors. This implies that the eigenvectors of the complex transpose P† and Γ†
are also the same as those of χ. If we consider an eigenvector ei of P with eigenvalue λ, then the
corresponding eigenvalue of P† is its complex conjugate λ∗, that of Γ is 1 − λ, and that of Γ† is
1 − λ∗. When n ≡

∑N
i=1 ciei is a linear combination of orthonormal eigenvectors ei and complex

coefficients ci , the numerical radius can be seen to be bound as��n†Mn
�� ≤ N∑

i=1
|ci |2

���e†i Mei

��� ∀n : n ≡
N∑
i=1

ciei ∧ ‖n‖ = 1. (49)

Since
∑N

i=1 |ci |
2 = 1 for orthonormal eigenvectors, to show that the convergence condition holds

it is sufficient that we prove that
���e†i Mei

��� < 1 for all eigenvectors, ei .

Substituting Pei = λ, P†ei = λ∗, Γei = 1 − λ, and Γ†ei = 1 − λ∗ in Eq. (48) enables us to
rewrite the convergence condition as the scalar inequality:���e†i Mei

��� ≤ ��1 + λ2
��

2
+
|1 − λ∗ | |1 − λ |

2
< 1. (50)



In terms of the real, λr, and imaginary, λi, parts of the eigenvalue λ ≡ λr + iλi, this yields:√��1 + λ2
r − λ

2
i

��2 + |2λrλi |
2

2
+

1 + λ2
r + λ

2
i − 2λr

2
< 1. (51)

The square root can be eliminated by rearranging the terms and squaring both sides:��1 + λ2
r − λ

2
i
��2 + |2λrλi |

2 <
(
1 − λ2

r − λ
2
i + 2λr

)2
. (52)

For gain-free materials, the eigenvalues of P have a non-negative real part, λr ≥ 0. This allows
us to rearrange the terms and simplifies the condition to:��1 − λ2

i
�� λ2

r <
(
1 − λ2

i

) (
2λr − λ

2
r

)
+ 2λ2

r

(
1 − λ2

i

)
− 2λ3

r . (53)

Since the singular values of P are less than 1 (‖P‖ < 1), so must be its eigenvalues. Therefore,
1 − λ2

i ≥ 0, so we can subtract the left-hand from both sides and simplify the expression to get:

0 <
(
1 − λ2

i

)
λr − λ

3
r . (54)

It can be seen that the strict inequality does not hold for λr = 0. However, the condition does hold
when there is a non-zero loss, λr > 0, which allows us to divide the expression by λr to yield
λ2

i + λ
2
r < 1. Since the eigenvalues are less than 1, we have λ2

i + λ
2
r = |λ |

2 < 1, proving that���e†i Mei

��� ≤ 1 for ei any eigenvector of χ. Although convergence cannot be guaranteed in lossless
materials, the strict inequality does not tend to be a limitation in practice since any non-zero loss
at the boundary is sufficient to ensure convergence.
We thus conclude that the algorithm converges when the eigenvectors of the susceptibility

distribution, χ, are orthogonal, a very common case. Yet, its eigenvectors will not be orthogonal
when the reactive and dissipative parts of the susceptibility do not commute. This would occur
when a birefringent crystal also has a polarization dependent absorption, yet with a different axis.
In what follows, such more general susceptibilities are considered.

5.2.2. Numerical demonstration of the convergence

In Section 2 we showed that the following choice of αi > max{A1, A2} guarantees convergence
of the modified Born series, where A1 and A2 are defined by Eq. (15). It was noted that without
constraining ∆i to be positive definite, A2 can be arbitrarily large, when 〈n |∆i |n〉 is close to
zero. We begin this Section by showing that this divergence can be avoided so long as ∆i has
an empty kernel (no eigenvectors with zero eigenvalue). Suppose that ∆i has an eigenvector
|n0〉 with eigenvalue λ, and consider that n can be written as the sum of two orthogonal
vectors |n〉 = |n0〉 + η |n⊥〉 where η � 1 and 〈n0 |n⊥〉 = 0. The expression for A2 inside the
maximization is then given by

|〈n |∆∆i + ∆i∆|n〉|

2〈n |∆i |n〉
=

������ 2λ〈n0 |∆|n0〉 + η (〈n⊥ |∆i∆|n0〉 + 〈n0 |∆∆i |n⊥〉)+

+ηλ(〈n⊥ |∆|n0〉 + 〈n0 |∆|n⊥〉) + η
2〈n⊥ |∆∆i + ∆i∆|n⊥〉|

������
2
(
λ + η2〈n⊥ |∆i |n⊥〉

) (55)

If λ = 0 (and the kernel of ∆i thus contains |n0〉 then the above quantity diverges as 1/η as we
take η to zero. The quantity A2 thus becomes infinite. However, if λ is non-zero (but arbitrarily
small) then as η → 0, (55) tends to |〈n0 |∆|n0〉| which is finite, and we note, smaller than or
equal to the largest singular value of ∆.



a b

Fig. 5. Numerical check that condition αi > max {A1, A2} ensures that the numerical radius
ofM , given by Eq. (21), is less than unity. To produce this figure we used the condition on the
numerical radius, |〈n |M |n〉| < 〈n |n〉, with 40× 40 matrices. We generated 1× 106 random
matrices ∆ (positive definite ∆i) and unitary matricesU , along with the corresponding values
of αi calculated as indicated in each panel (using Python’s numpy library for random matrix
generation [44]). For each matrix we calculated values for |〈n |M |n〉| for a set of 40 random
but orthogonal complex vectors, n. The largest magnitude of these values is one of the 106

points plotted in each panel. In (b) (largest magnitude 0.999997) we used the condition (58),
which we know analytically to be sufficient to move the eigenvalues of M within the unit
circle. In (a) (largest magnitude 0.999999) we show that αi > ‖∆‖ appears to guarantee also
that the eigenvalues are within the unit circle

Assuming that 〈n |∆i |n〉 is never zero, the quantity A2 can be rewritten in a form that is easier
to compute. First, we write the positive definite Hermitian matrix, ∆i, as the square of another
Hermitian matrix, a, so that it equals: ∆i = a2. Defining |n′〉 = a |n〉, the quantity A2 can be
written as

A2 = max
n′

|〈n′ |a−1∆a + a∆a−1 |n′〉|

2〈n′ |n′〉
(56)

which is simply the numerical radius r(m) of the matrix

m =
1
2
(a−1∆a + a∆a−1). (57)

The numerical radius of a matrix is always less than or equal to its norm [45] r(m) ≤ ‖m‖. In
addition, the norm of a sum is never larger than the sum of the norms, and we can therefore
estimate A2 as

A2 =
1
2

[
‖a−1∆a‖ + ‖a∆a−1‖

]
(58)

where ‖ · ‖ indicates the l2-norm. While the spectra of ∆ and e.g. a∆a−1 are the same, their
norms are not. Given that the spectral radius of an operator is always less than or equal to its
norm, the lowest possible value of A2 is the magnitude of the largest eigenvalue |λmax | of ∆.
Meanwhile, A1, being the square root of the numerical radius of a Hermitian operator, is equal to
the square root of the operator norm (1/2)‖∆∆† + ∆†∆‖, which is bounded by

A1 ≤
1
2
‖∆∆†‖ +

1
2
‖∆†∆‖ = |λmax | ≤ A2 (59)



where the estimate for A2 is here given by Eq. (58). We can therefore use this estimate of A2 to
find an upper bound for the value of αi. Fig. 5(b) shows a numerical test, where we chose A2
according to (58) and repeatedly evaluated the inner product 〈n |M |n〉 for different choices of
random complex 40× 40 matrices ∆ and U . These tests represent 106 × 40 = 4× 107 evaluations
of the inner product and appear to indicate that αi > ‖∆‖ is a tighter bound (Fig. 5(a)).
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