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GABAA receptor dependent synaptic inhibition
rapidly tunes KCC2 activity via the Cl−-sensitive
WNK1 kinase
Martin Heubl1,2,3, Jinwei Zhang 4,5,6, Jessica C. Pressey1,2,3, Sana Al Awabdh1,2,3, Marianne Renner1,2,3,

Ferran Gomez-Castro1,2,3, Imane Moutkine1,2,3, Emmanuel Eugène1,2,3, Marion Russeau1,2,3, Kristopher T. Kahle6,

Jean Christophe Poncer1,2,3 & Sabine Lévi1,2,3

The K+–Cl− co-transporter KCC2 (SLC12A5) tunes the efficacy of GABAA receptor-mediated

transmission by regulating the intraneuronal chloride concentration [Cl−]i. KCC2 undergoes

activity-dependent regulation in both physiological and pathological conditions. The regula-

tion of KCC2 by synaptic excitation is well documented; however, whether the transporter is

regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation

by GABAA receptor (GABAAR)-mediated transmission in mature hippocampal neurons.

Enhancing GABAAR-mediated inhibition confines KCC2 to the plasma membrane, while

antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion

and endocytosis of the transporter. This mechanism utilizes Cl− as an intracellular secondary

messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the

Cl−-sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of

synaptic inhibition by rapidly adjusting neuronal [Cl−]i to GABAAR activity.
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Inhibitory GABAergic signaling in mature neurons depends on
intracellular chloride concentration [Cl−]i. Thus, Cl− home-
ostasis is essential to maintain the polarity and amplitude of

Cl− fluxes through the ionotropic γ-aminobutyric acid receptor
(GABAAR). The hyperpolarizing shift in GABAAR-activated
current during development depends on a functional upregula-
tion of the neuronal K+–Cl− co-transporter KCC2, which
extrudes Cl− from neurons using outwardly directed K+ gra-
dient1. In addition to maintaining low [Cl−]i, KCC2 regulates the
formation2, function and plasticity3, 4 of glutamatergic synapses.
Consistent with its key role in regulating inhibitory and excitatory
neurotransmission, alterations in KCC2 expression and function
have been correlated with pathological network activity in a
variety of neurological and psychiatric disorders5–9.

We recently demonstrated that activity-dependent regulation
of KCC2 membrane diffusion and clustering mediates a rapid
regulation of Cl− homeostasis in neurons. Enhanced glutama-
tergic synaptic activity increases KCC2 membrane diffusion,
leading to transporter escape from clusters located near excitatory
and inhibitory synapses and endocytosis from the plasma mem-
brane10. This regulation involves the Ca2+-dependent, PP1-
mediated, dephosphorylation of KCC2 at serine (S) 940 and the
Ca2+ activated, calpain-dependent cleavage of the KCC2 carboxy-
terminal domain (CTD)11, 12. This downregulation of KCC2 may
be induced upon increased glutamate release13 or long-term
potentiation of glutamatergic synapses14 and results in a depo-
larizing shift of the reversal potential of GABAAR-mediated
currents (EGABA)12, 15. GABA itself, when acting as a depolarizing
and sometimes excitatory neurotransmitter during early postnatal
development, also downregulates KCC2 via L-type calcium
channel activation16. While regulation of KCC2 by synaptic
excitation is well documented, it is unknown whether synaptic
inhibition may regulate the membrane expression and/or activity
of KCC2 in mature neurons.

Here we examined whether GABAergic inhibition modulates
KCC2 membrane dynamics, clustering, stability, and function in
mature hippocampal neurons. We show that GABAAR activation
stabilizes KCC2 at the plasma membrane. In contrast, blocking
GABAAR-dependent inhibition rapidly increases KCC2 mem-
brane dynamics, reducing its membrane clustering, stability, and
activity of the transporter. We show that this mechanism is
mediated by chloride ions via the Cl−-sensitive serine/threonine
WNK1 kinase-dependent phosphorylation of KCC2 at threonines
(T) 906 and 1007, two key regulatory sites of KCC2 activity
during brain development17, 18. Together, our results reveal a
novel mechanism that rapidly tunes [Cl−]i and GABA signaling in
response to acute changes in GABAAR-mediated inhibitory
transmission. We speculate that antagonizing WNK1 kinase
activity may be a promising strategy to restore inhibition by
restoring Cl− homeostasis in diseases like epilepsy, schizophrenia,
and neuropathic pain.

Results
GABAAR activation rapidly regulates KCC2 membrane diffu-
sion. We asked whether pharmacological modulation of
GABAergic inhibition impacts the membrane dynamics of KCC2
using quantum dot-based single-particle tracking (QD-SPT)
technique in cultures of hippocampal neurons (DIV 21–24). At
this stage, GABAAR-mediated responses are hyperpolarizing and
inhibitory, as demonstrated by EGABA measurements using
gramicidin-perforated patch-clamp and local GABA uncaging
(Supplementary Fig. 1). Since changes in glutamatergic trans-
mission affect KCC2 diffusion and surface expression10, the
impact of GABAAR activity on KCC2 diffusion was explored in
the presence of the Na+ channel blocker tetrodotoxin TTX (1

µM), the ionotropic glutamate receptor antagonist kynurenic acid
(KYN, 1 mM), and the group I/group II mGluR antagonist R,S-
MCPG (500 µM). Herein, the “TTX + KYN +MCPG” condition
is referred as the “control” condition (see Methods). Neurons
were then acutely exposed to the GABAAR agonist muscimol (10
µM) or competitive antagonist gabazine (10 µM). Whole-cell
patch-clamp recordings showed that muscimol induces a persis-
tent current that desensitizes to <50% upon 10 min of application
(Supplementary Fig. 1). In contrast, gabazine led to a rapid and
complete blockade of mIPSCs throughout application of the drug
(Supplementary Fig. 1). Therefore, GABAAR-mediated inhibition
in our culture system can be rapidly stimulated or blocked upon
acute bath application of muscimol or gabazine.

We examined whether activation of GABAergic inhibition by
muscimol influences KCC2 diffusion using QD-SPT. Neurons
were transfected at DIV 14 to express recombinant, Flag-tagged
KCC2 (KCC2-Flag) and then surface labeled at DIV 22–25 with
anti-Flag antibodies, specific intermediate biotinylated Fab
fragments and streptavidin-coated QDs (see Methods section,
and ref. 10). Surface exploration of individual QDs was restricted
to smaller areas upon muscimol exposure, as compared with
control condition (Fig. 1a). Quantitative analysis performed on
the bulk population (extrasynaptic + synaptic) of trajectories
revealed no significant effect of muscimol on the diffusion
coefficient of KCC2 (Fig. 1b). However, the slope of the mean-
square displacement (MSD) vs. time function was reduced for
trajectories recorded in the presence of muscimol as compared
with control (Fig. 1c), indicative of increased confinement upon
GABAAR activation. Consistent with this observation, the median
explored area (EA) was also significantly decreased upon
muscimol application (Fig. 1d, Supplementary Table 1).

Next, we tested the impact of GABAAR blockade on KCC2
diffusion. Both application of gabazine (10 µM) increased the
surface explored by individual QDs (Fig. 1e). When examining
the bulk population of QDs, gabazine increased KCC2-Flag
diffusion coefficients by 1.4-fold (Fig. 1f, Supplementary Table 1).
Furthermore, the MSD vs. time function displayed a steeper slope
(Fig. 1g) and the median value of the explored area was increased
by 1.4-fold (Fig. 1h, Supplementary Table 1) upon gabazine
application, indicative of less confined trajectories. The regulation
of KCC2 diffusion by gabazine was not due to a non-specific
action of the drug, since a similar effect on KCC2 diffusion was
induced by the GABAAR channel blocker picrotoxin (100 µM)
(Supplementary Fig. 2, Supplementary Table 1). We then
compared the effect of gabazine on the diffusive behavior of
KCC2 in extrasynaptic and synaptic domains of neurons co-
transfected with KCC2-Flag and the excitatory and inhibitory
synaptic markers homer1c-GFP and gephyrin-mRFP, respec-
tively. Gabazine significantly increased KCC2 diffusion coefficient
and explored area both in the extrasynaptic membrane and near
excitatory and inhibitory synapses (Fig. 1i–k, Supplementary
Table 1). Consistent with these observations, gabazine induced a
1.3-fold and 1.5- fold faster escape of KCC2 from the vicinity of
excitatory and inhibitory synapses, respectively (Fig. 1l, Supple-
mentary Table 1). Thus, KCC2 exhibits reduced diffusion
constraints and a faster escape from synaptic domains upon
GABAAR blockade.

Synaptically released GABA may activate postsynaptic, as well
as extrasynaptic GABAARs through spillover. In hippocampal
pyramidal cells, tonic currents carried by extrasynaptic GABAARs
show a predominant α5 subunit pharmacology19, 20. Tonic
GABAAR currents were virtually undetectable in cultured
hippocampal neurons in the absence of exogenous GABA21

(Supplementary Fig. 1). In agreement, addition of L-655,708
(50 µM), an α5-GABAAR-selective inverse agonist, had no effect
on KCC2 diffusion (Fig. 2a, b, Supplementary Table 2). To check
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the contribution of tonic GABAAR currents on KCC2 diffusion,
we elicited tonic GABA currents with a bath application of GABA
(2 µM) 10min before imaging. Exogenous GABA reduced by 1.2-
fold KCC2 diffusion coefficients and by 1.1-fold its explored area,
revealing enhanced diffusion constraints onto the transporter as
compared with control (Fig. 2c, d, Supplementary Table 2). This
effect is reminiscent of that induced by muscimol. Addition of L-
655,708 significantly increased the mobility and reduced the
confinement of KCC2, relative to GABA alone (Fig. 2c, d,
Supplementary Table 2). Therefore, tonic activation of α5-

containing GABAARs regulates KCC2 diffusion. These results
indicate that both phasic and tonic GABA signaling regulate
KCC2 diffusion.

GABAA and GABAB receptors (GABABRs) both contribute to
inhibitory signaling. We examined whether metabotropic GABAB

receptor (GABABR)-mediated inhibition may also influence
KCC2 diffusion. Bath application of the GABABR agonist
baclofen (20 µM) hyperpolarized hippocampal neurons by 8.7
± 2.2 mV (Supplementary Fig. 3). This hyperpolarization was
reversible and could be blocked by the selective GABABR
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Fig. 1 GABAAR blockade increases KCC2 membrane diffusion. a Examples of KCC2 trajectories showing reduced surface exploration in the presence of
muscimol. Scale bars, 0.5 µm. b Median D ±25–75% Interquartile Range IQR of diffusion coefficients of KCC2 in control condition (white) or upon
application of muscimol (black) showing no significant effect of muscimol on KCC2 diffusion. n= 416 QDs, 4 cultures, KS test p= 0.139. c, d Time-
averaged MSD functions c and median explored area EA ±25–75% IQR d in control (white) vs. muscimol (black) conditions show increased confinement
upon muscimol application. n= 838 QDs, 4 cultures, KS test p= 0.039. e Examples of KCC2 trajectories in the presence or absence of gabazine showing
increase in QD surface exploration in gabazine-treated condition. Scale bars, 0.5 µm. f Median D of KCC2 in control condition (white) are increased upon
gabazine application (black). N= 441 QDs, 5 cultures, KS test p< 0.001. g, h Time-averaged MSD functions g and EA h in control (white) vs. gabazine
(black) conditions indicate decreased confinement upon GABAAR blockade. N= 880 QDs, 5 cultures, KS test p< 0.001. i Trajectories (white) overlaid
with fluorescent clusters of recombinant homer1c-GFP (green) or gephyrin-mRFP (red) to identify extrasynaptic trajectories (left), trajectories at excitatory
(middle) and inhibitory synapses (right). Scale bars, 1 µm. j, k Median D j and EA k of KCC2 are increased upon gabazine application (black) as compared
with control condition (white). j extra, n= 129 QDs, KS test p= 0.009, ES, n= 109 QDs, KS test p= 0.004, IS, n= 89 QDs, KS test p= 0.001; 4 cultures. k
extra, n= 362 QDs, KS test p< 0.001; ES, n= 212 QDs, KS test p= 0.034; IS, n= 202 QDs, KS test p= 0.015, 4 cultures. l Mean dwell time DT (±s.e.m) of
KCC2 at excitatory (ES) and inhibitory (IS) synapses is decreased upon GABAAR blockade with gabazine (black) as compared with control condition
(white). ES, Ctrl n= 207 QDs and Gbz n= 218 QDs, MW test p= 0.035; IS, Ctrl n= 162 QDs and Gbz n= 119 QDs, MW test p= 0.047, 4 cultures. b, f, j D
in µm2s-1; d, h, k EA in µm2
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antagonist CGP52432 (20 µM, Supplementary Fig. 3). We found
that up to 45 min exposure to either baclofen or CGP52432,
however, had no detectable effect on diffusion coefficients and
explored area (Fig. 2e, f, Supplementary Table 2). Therefore,
KCC2 diffusion is specifically regulated by GABAAR but not
GABABR-mediated transmission. Since GABABR activation leads
to membrane hyperpolarization, this result further suggests KCC2
diffusion may not be directly regulated by hyperpolarization.

KCC2 modulation is independent of Ca2+ signaling. Rapid,
activity-dependent regulation of KCC2 membrane dynamics and
stability has been shown to require Ca2+ influx through NMDAR
or voltage-gated calcium channels (VGCC)12, 15 and subsequent
S940 dephosphorylation10. The presence of TTX and glutamate
receptor antagonists in our experiments should however mini-
mize Ca2+ influx. In agreement, gabazine application in the
presence of TTX + KYN +MCPG did not increase [Ca2+]i in
hippocampal neurons, as revealed in Ca2+ imaging experiments
(Fig. 3a–d). In addition, extracellular application of cadmium
(100 µM; Cd2+), a non-specific VGCC blocker, failed to prevent
gabazine-induced increase in KCC2 diffusion (Fig. 3e) and
reduced confinement (Fig. 3f, Supplementary Table 2).

Glutamate-induced increase in KCC2 diffusion relies on
dephosphorylation of S94010. We asked whether phosphorylation
of this residue may be also involved in the regulation of KCC2
diffusion by GABAARs. Overexpression of the phosphomimetic
KCC2-S940D transporter10 did not prevent the gabazine-induced
increase in KCC2 diffusion (Fig. 3g, h, Supplementary Table 2).
Altogether, these results demonstrate that GABAAR-mediated
regulation of KCC2 membrane diffusion does not involve Ca2+

signaling and S940 phosphorylation.

Cl− dependent WNK signaling regulates KCC2. Since Ca2+

signaling is not involved in GABAAR-mediated regulation of
KCC2 diffusion, what is the underlying signaling mechanism?
GABAAR activation leads to Cl− influx in mature neurons.
Conversely, GABAAR blockade decreases [Cl−]i. This suggests
that changes in [Cl−]i may underlie the effects of GABAAR
manipulations on KCC2 diffusion. We tested this hypothesis by
first examining whether changes in GABAAR activity were
associated with changes in [Cl−]i. We measured the steady-state
[Cl−]i in neurons using fluorescence resonance energy transfer
(FRET) multiphoton imaging of the chloride sensor Super-
Clomeleon22. We calibrated the probe in our system using
Neuro2a cells (see Methods section). The FRET ratio of Super-
Clomelon was tightly correlated with [Cl−]I, with highest sensi-
tivity in the 15–100 mM range (Fig. 4a). However, the probe
showed little sensitivity for concentrations ranging 0–15 mM. We
analyzed the effect of muscimol or gabazine on [Cl−]i in neurons
transfected with SuperClomeleon. As expected, we observed a
significant decrease in the FRET ratio of SuperClomeleon signal
upon 5 min of muscimol application (−10± 3%; Fig. 4b), indi-
cating an increase in [Cl−]i. Blockade of GABAAR with gabazine
is instead expected to decrease [Cl−]i. However, no detectable
change in FRET ratio was observed upon 5 min. of gabazine
application (Fig. 4b), likely due to the lack of sensitivity of the
probe in 0–15 mM range in our experimental conditions (Fig. 4a).
However, prolonged application of gabazine (50 min) led to a
reduced FRET ratio of SuperClomeleon (~26± 8%; Fig. 4b),
reflecting an increased [Cl−]i possibly through altered trans-
membrane chloride extrusion (see below).

Next, we investigated whether changes in [Cl−]i may influence
KCC2 diffusion independently of GABAAR activity. We increased
[Cl−]i by exposing neurons to the selective KCC2 inhibitor
VU0463271 (10 µM)23, while [Cl−]i was lowered by substituting
extracellular Cl− with methanesulfonate in the imaging medium.
As expected for a respective increase and decrease in [Cl−]i,
VU0463271 rapidly reduced the FRET ratio of SuperClomeleon
signal (−15± 5%), while lowering extracellular Cl− level increased
it (+25± 9%; Fig. 4b). Using these experimental paradigms, we
then explored the impact of manipulating [Cl−]i on KCC2
diffusion. Within 10 min and up to 45 min of VU application, the
surface explored by individual KCC2 transporters was reduced
(Fig. 4c, f) with no impact on diffusion coefficient (Fig. 4d) but a
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Fig. 2 Tonic GABAAR but not GABABR activity regulates the lateral
diffusion of KCC2. a, b No contribution of tonic GABAAR-mediated
inhibition on KCC2 diffusion under basal conditions. Median diffusion
coefficients D ±25–75% IQR a and median explored area EA ±25–75% IQR
b (for bulk population of QDs) of KCC2 measured in absence (white) or
presence (gray) of 50 µM L-655,708 in the absence of exogenous GABA. a
n= 320 QDs, 2 cultures, p= 0.658; b, n= 640 QDs, 2 cultures, p= 0.472.
c, d Tonic activation of GABAARs by exogenous GABA affects KCC2
diffusion. Application of 2 μM GABA (black) decreased the diffusion and
increased the confinement of KCC2 as compared with control condition
(white). Addition of L655,708 (pattern) to GABA decreased KCC2
diffusion constraints compared with neurons exposed to GABA only. c n=
271 QDs, 3 cultures; Ctrl vs. GABA p= 0.042; GABA vs. GABA + L-655,708
p= 0.035. d n= 542 QDs, 3 cultures; Ctrl vs. GABA, p< 0.001; GABA vs.
GABA + L-655,708 p< 0.001. e, f No effect of GABABR activity on KCC2
diffusion. Median diffusion coefficients e and median explored area f (for
bulk population of QDs) of KCC2 measured in absence (white) or presence
(black) of baclofen or CGP52432. e Baclofen experiment: n= 278 QDs, 3
cultures, p= 0.864; CGP52432 experiment: n= 279 QDs, 3 cultures, p=
0.425. f baclofen experiment: n= 555 QDs, 3 cultures, p= 0.338;
CGP52432 experiment: n= 580 QDs, 3 cultures, p= 0.091. In all graphs,
KS test was used for data comparison. a, c, e D in µm2s-1; b, d, f EA in µm2
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significant increase in KCC2 confinement, as illustrated by the
steeper slope of the MSD vs. time function (Fig. 4e, Supplemen-
tary Table 3). We next tested whether increasing [Cl−]I may
influence the diffusion behavior of the transporter. Using
photostimulation of the light-activated chloride pump halorho-
dopsin (eNpHR), we found that increasing [Cl−]I significantly
reduced the diffusion coefficient and increased the confinement
of KCC2. This effect was readily observed 10 s after light exposure
for matched QDs (Fig. 4g) and population of QDs (Fig. 4h–j,
Supplementary Table 3) and was still detected after 1 min of
eNpHR activation. Therefore, increasing [Cl−]I promotes KCC2
membrane confinement. In contrast, lowering [Cl−]i by extra-
cellular Cl− substitution significantly increased KCC2 surface
exploration and mobility for individual trajectories (Fig. 4k) and
population of QDs (Fig. 4l–n, Supplementary Table 3). Together,
these results provide evidence that intracellular Cl− acts to rapidly
modulate KCC2 diffusion.

The serine-threonine WNK kinases are activated by low [Cl]i24,
25 and activated WNKs promote KCC2 phosphorylation at T906
and T100726, 27. Dephosphorylation of these residues correlates
with increased functional expression of KCC2 during postnatal
development17, 26. We therefore hypothesized that lowering [Cl
−]i, in mature neurons may activate WNK kinase(s) and thereby
promote KCC2 T906/T1007 phosphorylation and reduce its

membrane confinement. We first used quantitative polymerase
chain reaction (qRT-PCR) to determine the expression pattern of
the four different WNK kinase family members (WNK1–WNK4)
28 in mature hippocampal neurons. As shown in Fig. 5a, WNK1
and WNK3 mRNAs are the only WNK family members detected
after 28 cycles of PCR amplification in mature hippocampal
neurons. qRT-PCR revealed WNK1 is, respectively, ~500-fold,
10-fold, and 90-fold more abundant than WNK 2, 3, and 4
transcripts in DIV 21 hippocampal cultures (Fig. 5b). The relative
abundance of the diverse WNK transcripts did not differ
strikingly between DIV 21 hippocampal cultures and hippocam-
pal tissue from adult rat brain (Fig. 5b). These results show that
WNK1, and to a lesser extent WNK3, are the predominant WNK
family members expressed in mature hippocampal neurons.

We next examined the contribution of WNK1 to the GABAAR-
dependent regulation of KCC2 diffusion. Since WNK kinases are
activated by autophosphorylation of S38227, we first tested
whether GABAAR blockade may induce WNK1 autophosphor-
ylation. Application of gabazine increased WNK1 S382 phos-
phorylation 1.5-fold, indicating WNK1 activation upon GABAAR
blockade (Fig. 5c, d, Supplementary Fig. 4). WNK1 stimulates
KCC2 phosphorylation via the SPAK/OSR1 kinases27. Consistent
with WNK1 activation, gabazine application also increased SPAK
S373 and OSR1 S325 phosphorylation (Fig. 5c–e, Supplementary
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neurons loaded with Fluo4-AM, before (top) and after (bottom) NMDA treatment. Scale bar, 10 µm. d Calcium level shown as F/F0 ratio as in b. Note the
increase in intracellular calcium after NMDA exposure. 19 cells; 2 cultures; paired t test p< 0.001. e, fMedian diffusion coefficients D values ±25–75% IQR
e and median explored area EA ±25–75% IQR f (for bulk population of QDs) of KCC2 measured in presence of the Ca2+ channel blocker Cd2+ alone
(white) or in presence of gabazine (black). Cd2+ did not prevent the gabazine-induced reduction in diffusion constraints of KCC2. e n= 250 QDs, 3
cultures, p= 0.003. f n= 500 QDs, 3 cultures, p< 0.001. g, h Median D g and EA h (for bulk population of QDs) of KCC2-S940D under control (white) or
gabazine (black) conditions. Again, S940D substitution did not prevent the gabazine-induced reduction in diffusion constraints of KCC2. g n= 190 QDs, 3
cultures, p= 0.021; H, n= 380 QDs, 3 cultures, p< 0.001. e–h KS test was used for data comparison. e, g D in µm2s-1; f, h EA in µm2
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Fig. 4 Changes in intracellular [Cl−]i concentration tune KCC2 diffusion. a Calibration of SuperClomeleon in Neuro2a cells. Ionophore treatment was used
to clamp [Cl−]i to 5, 10, 15, 30, 60, and 138mM. b Images of Cl− dependent changes in the FRET ratio (535/483 nm) in hippocampal neurons expressing
SuperClomeleon, before (ctrl) and after 5 or 50min application of muscimol (Musc), gabazine (Gbz), KCC2 blocker (VU) or extracellular Cl− substitution
(0 Cl). The graph shows changes in FRET emission ratio upon treatment relative to control. Muscimol n= 6 cells, p= 0.031 at 5 and 0.063 at 50min;
Gabazine n= 5 cells, p= 0.063 at 5 and 0.008 at 50min; VU n= 4 cells, p= 0.125 at 5 and 0.015 at 50min; 0 Cl n= 4 cells, p= 0.047 at 5 and 0.030 at
50min. Wilcoxon ranked sum test or paired t-test when normality test was passed; 4 cultures. Insets: Ratiometric images of SuperClomeleon in control vs.
treatment. Scale bar, 10 µm. c KCC2 trajectories in control vs. VU. Scale bars, 0.5 µm. d Median diffusion coefficient D values ±25–75% IQR (for bulk
population of QDs) of KCC2 in control condition (white) or upon application of VU (black). n= 386 QDs, 3 cultures, KS p= 0.228. e, f MSD vs. time
functions h and median explored area EA ±25–75% IQR i in control (white) vs. VU (black). N= 712, 3 cultures, KS test p= 0.032. g Matched KCC2
trajectories before (t0), and after 10 s or 1 min of eNpHR (+halo) photostimulation. Scale bars, 0.5 µm. h–jMedian D hMSD i and EA j upon 10 s or 1 min of
eNpHR photostimulation. h n= 215 QDs, 2 cultures, KS test p= 0.011 and p< 0.001; j, n= 469 QDs, 2 cultures, KS test p< 0.001. k KCC2 trajectories in
high vs. low extracellular Cl− concentration. Scale bars, 0.5 µm. l–n Median D l MSD m and EA n showing increased diffusion and reduced confinement of
KCC2 upon reduction of Cl− concentration. l n= 408 QDs, 3 cultures, KS test p= 0.001; N, n= 816 QDs, 3 cultures, KS test p< 0.001. d, h, l D in µm2s-1; f,
j, n EA in µm2
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Fig. 4). Gabazine-induced SPAK S373 and OSR1 S325 phosphor-
ylation could be inhibited by addition of the SPAK/OSR1
inhibitor closantel29 (Supplementary Fig. 5). In contrast, and
consistent with the upstream position of WNK1 in the WNK1-
SPAK/OSR1-KCC2 signaling pathway, closantel had no effect on
WNK1 S382 phosphorylation (Supplementary Fig. 5).

Next, we assessed the contribution of the WNK-SPAK/
OSR1 signaling cascade to the GABAAR-dependent regulation
of KCC2 diffusion. Overexpressing shRNAs that reduced WNK3
expression by ~80% (Supplementary Fig. 6) did not block the
effect of gabazine on KCC2 diffusion (Supplementary Fig. 6),
suggesting it may primarily involve WNK1. This was tested using
overexpression of kinase-dead (WNK1-KD) or constitutively-
active WNK1 (WNK1-CA)17. Under basal conditions, over-
expression of WNK1-KD did not influence KCC2 diffusion
(Fig. 5g, Supplementary Table 3) whereas overexpression of a

WNK1-CA significantly enhanced KCC2 diffusion (Fig. 5g,
Supplementary Table 3), consistent with previous work showing
reduced membrane stability of KCC2 upon WNK1 phosphoryla-
tion17. Moreover, shRNA-mediated WNK1 knockdown or
WNK1-KD overexpression suppressed the gabazine-induced
increase in KCC2 mobility (Fig. 5h, Supplementary Table 3), as
did inhibition of SPAK/OSR1 with closantel (Fig. 5f, Supplemen-
tary Table 3). Collectively, these results implicate the activity of
the WNK1 and SPAK/OSR1 kinases in the GABAAR-dependent
regulation of KCC2 lateral diffusion.

WNK activity is required for KCC2 T906 and T1007
phosphorylation, which inhibits KCC2 activity17, 26. Consistent
with an increased WNK activation upon GABAAR blockade,
gabazine application increased KCC2 T906/T1007 phosphoryla-
tion (Fig. 6a, b; Supplementary Fig. 7). Interestingly, WNK
kinases not only promote KCC2 T906/T1007 but also NKCC1
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T203/T207/T212 phosphorylation30. This in turn results in both
KCC2 inhibition and NKCC1 activation28. Consistent with this
dual modulation of Cl− transport by WNK, GABAAR blockade
also induced NKCC1 T203/T207/T212 phosphorylation (Fig. 6a,
c). This gabazine-induced phosphorylation of KCC2 and NKCC1
was SPAK/OSR1-dependent, as it was inhibited by closantel
(Supplementary Fig. 5). In addition, KCC3 which is also
expressed in hippocampal neurons31 was also phosphorylated
upon gabazine application in a SPAK/OSR1-dependent manner
(Supplementary Fig. 8). Finally, KCC2 may be immuno-
precipitated using a phospho-specific KCC2 pT906 antibody that
recognizes a phospho-residue highly homologous to other
KCCs27. We used this antibody to control whether the detection
of increased KCC2 T906 phosphorylation may be due to a
contribution of other KCCs. This was not the case, since KCC1
and KCC4 were not retained after KCC2 T906 immunoprecipita-
tion (Supplementary Fig. 8).

In order to test the involvement of KCC2 T906/T1007
phosphorylation in the gabazine-induced regulation of KCC2
diffusion, we expressed KCC2 constructs harboring mutations of
T906 and T1007 to either glutamate (T906/T1007E) or alanine
(T906/T1007A) that mimic phosphorylated or dephosphorylated
states, respectively17. Under basal conditions, the diffusion of
KCC2 T906/T1007E was enhanced 1.3-fold compared with WT

KCC2 (Fig. 6d, e, Supplementary Table 3). In contrast, the
mobility of the KCC2 T906/T1007A did not differ significantly
from that of WT KCC2 (Fig. 6d, e, Supplementary Table 3).
These results indicate that the majority of membrane KCC2 in
mature neurons is likely dephosphorylated on T906/T1007 under
basal conditions, consistent with previous results17, 26. Impor-
tantly, KCC2 T906/T1007A prevented the gabazine-induced
increase in KCC2 lateral diffusion (Fig. 6d, f, Supplementary
Table 3). Furthermore, gabazine did not further increase the
diffusion of the T906/T1007E transporter (Fig. 6d, f, Supplemen-
tary Table 3). We conclude that GABAAR-dependent regulation
of KCC2 diffusion involves phosphorylation of its T906/T1007
residues.

Functional impact of KCC2 regulation by GABAAR inhibition.
What is the functional impact of GABAAR-mediated regulation
of KCC2 diffusion? We previously demonstrated that the reg-
ulation of KCC2 lateral diffusion by increased excitation allows
for a rapid regulation of the transporter clustering and activity10.
We therefore examined whether changes in GABAAR-dependent
inhibition also resulted in altered KCC2 clustering in hippo-
campal neurons. In control conditions, KCC2-Flag formed
numerous clusters along the dendrites of transfected neurons
(Fig. 7a). Neither muscimol or gabazine affected the density of
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these clusters (Fig. 7a, Supplementary Fig. 9). Muscimol did not
affect the mean fluorescence intensity (Fig. 7b) or the mean
fluorescence intensity per pixel within clusters (Fig. 7b), indi-
cating no detectable impact on KCC2 clustering. In contrast,
gabazine application reduced membrane-associated KCC2-Flag
immunoreactivity (Fig. 7a, b). A 30 min exposure to gabazine
reduced by 1.2-fold the mean fluorescence intensity of clusters
and the mean fluorescence intensity per pixel within clusters
(Fig. 7b) as compared with untreated cells. Therefore, gabazine-
induced increase in KCC2 membrane dynamics is accompanied
by a rapid reduction in the clustering of the transporter. Inhibi-
tion of SPAK/OSR1 with closantel (Fig. 7b), shRNA knockdown
of WNK1 (Fig. 7b), or shRNA knockdown of WNK3

(Supplementary Fig. 6) suppressed the gabazine-induced reduc-
tion in the mean fluorescence intensity of clusters and the mean
fluorescence intensity per pixel within clusters. These data
implicate the WNK1–WNK3/SPAK/OSR1 signaling in the
gabazine-dependent regulation of KCC2 clustering.

KCC2 co-transporters that escaped clusters upon gabazine
treatment may diffuse freely in the membrane or undergo
clathrin-dependent endocytosis. Surface biotinylation experi-
ments revealed that gabazine reduced cell surface KCC2 to 78
± 9% of control without significantly changing the total protein
level of the transporter (Fig. 7c–e, Supplementary Fig. 10). In
contrast, muscimol did not modify KCC2 surface and total
protein level (Fig. 7c–e, Supplementary Fig. 10), indicating it does
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not significantly affect the internalization of KCC2. Therefore,
gabazine increases the membrane turnover of KCC2, likely due to
increased diffusion and cluster dispersal.

Reduced expression of membrane-inserted KCC2 is predicted
to reduce Cl− export and impact GABAAR-mediated transmis-
sion. In order to test this, we compared the reversal potential of
GlyR currents (EGly) upon application of gabazine in neurons
transfected with a recombinant glycine receptor α1 subunit32.
KCC2 dispersion upon gabazine was accompanied by a
significant depolarization of EGly, reflecting an increase in [Cl–]i
(Fig. 8a–c). This gabazine-induced increase in [Cl–]i is reminis-
cent of the reduced FRET ratio of SuperClomeleon observed in
neurons exposed for 50 min to the drug (Fig. 4b). Therefore,
blocking GABAAR-mediated inhibition results in reduced KCC2-
dependent Cl− export due to reduced membrane expression of
the transporter.

In addition to regulating intraneuronal [Cl−]i, KCC2 function
also controls dendritic spine head volume in mature hippocampal
neurons3. Thus, KCC2 suppression or chronic pharmacological
blockade of its transport activity increases spine head diameter3, 4.
We therefore tested whether GABAAR-dependent regulation of
KCC2 dynamics and membrane stability may also alter dendritic
spines in mature neurons. Up to 30 min muscimol application
had no significant effect on spine head area (Fig. 9a, b). Gabazine
however caused a 1.4-fold increase in spine head area (Fig. 9a, b),
consistent with a reduced expression and/or function of the
transporter in spines. This gabazine-mediated increase in spine

head area required WNK1 but not WNK3 activity, as it was
blocked by shRNAs targeting WNK1 (Fig. 9c) but not WNK3
(Supplementary Fig. 6). Expression of KCC2 T906/T1007A did
not affect dendritic spine morphology (Fig. 9d, e). In contrast,
spine head size was increased 1.3-fold upon overexpression of the
phospho-mimicking KCC2-T906/T1007E, as compared with WT
KCC2 (Fig. 9d, e). These results support the notion that most
KCC2 is dephosphorylated at T906/T1007 under basal activity
conditions in mature neurons and that phosphorylation of these
residues reduces KCC2 membrane expression, thereby leading to
spine swelling. Moreover, expression of KCC2-T906/T1007A
completely blocked gabazine-induced spine head swelling
(Fig. 9f). Collectively, these results demonstrate that transient
blockade of GABAAR-mediated transmission alters KCC2 surface
expression and ion transport function via effects on WNK1
kinase-dependent KCC2 T906/T1007 phosphorylation, thereby
affecting both GABA signaling and dendritic spine morphology.

We next asked whether GABAAR-dependent regulation of
KCC2 and NKCC1 may occur under physiological and/or
pathological conditions. We first tested whether the gabazine-
mediated regulation of KCC2 occurred in cultured hippocampal
neurons in the absence of sodium channel and glutamate receptor
blockers. In such conditions, acute application of gabazine still
reduced by ~1.2-fold the mean fluorescence intensity of clusters
and the mean fluorescence intensity per pixel within clusters
(Supplementary Fig. 11) as compared with untreated cells.
Furthermore, this effect was blocked by closantel (Supplementary
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Fig. 9 KCC2-dependent spine volume regulation is modulated by GABAAR-mediated inhibition. a Secondary dendrites of eGFP expressing neurons in
control conditions or upon application of gabazine or muscimol. Scale bars, 10 µm. bMedian values ±25–75% IQR of spine head area from eGFP expressing
neurons in control (white), gabazine (black), or muscimol (pattern). Ctrl n= 1301 spines; Gbz n= 1082 spines; Musc n= 1014 spines, 3 cultures; Ctrl vs.
Gbz p= 0.005, Ctrl vs. Musc p= 0.978. c Median values ±25–75% IQR of spine head area from shMock or shWNK1 overexpressing neurons in control
(white and black stripes) or gabazine (black and white stripes) conditions, respectively. Note the increase in spine head area upon application of gabazine
for shMock (p< 0.001) transfected cells and the decrease (p= 0.009) in spine head volume for shWNK1 overexpressing neurons. ShMock n= 260 spines;
shMock + Gbz n= 232 spines; shWNK1 n= 95 spines, shWNK1 + Gbz n= 166 spines, 2 cultures. d Same as in a for neurons expressing eGFP and KCC2-
Flag or KCC2-Flag mutated on T 906/1007 to A (T906/T1007A) or glutamate (T906/T1007E). Scale bars, 10 µm. e Overexpression of T906/T1007E
mutant (gray) but not T906/T1007A mutant (fine stripe) increased spine head volume compared with WT (white). f No change in spine head volume
could be observed upon gabazine application in cells expressing KCC2-Flag T906/T1007A (wide stripe). e, f T906/T1007 n= 1301 spines, T906/T1007A
n= 1224 spines, T906/T1007E n= 983 spines, T906/T1007A + Gbz n= 1093 spines, 3 cultures; T906/T1007 vs. T906/T1007E p= 0.014, T906/T1007
vs. T906/T1007A p= 0.099, T906/T1007A vs. T906/T1007A + Gbz p= 0.06. b, c, e, f Spine head area in µm2. The KS test was used for all data
comparison
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Fig. 11), thus involving the WNK/SPAK signaling pathway. These
results demonstrate that GABAAR-dependent regulation of KCC2
operates under physiological conditions with intact neuronal and
synaptic activity. We then explored the impact of GABAAR
activation on KCC2 membrane stability in the intact hippocam-
pal network. Surface biotinylation experiments were performed in
acute hippocampal slices prepared from 5–7-week-old C57bl6
mice treated with vehicle or muscimol for 30 min at 35 °C. We
found that acute muscimol treatment increased by 1.2 and 1.3-
fold the surface expression level of KCC2 monomers and
oligomers, respectively (Supplementary Fig. 11). Therefore, we
conclude that GABAAR activation stabilizes KCC2 at the
neuronal surface in the intact hippocampal network.

Finally, we explored whether the WNK1/SPAK/OSR1 signaling
pathway could be activated and regulate KCC2/NKCC1 threonine

phosphorylation in vivo. The activity of the WNK1/SPAK/OSR
signaling pathway is elevated in the embryonic and neonatal first
postnatal week and significantly decreases with brain maturation
into adulthood17. We therefore asked whether this pathway could
be “reactivated” in the mature brain under pathological condi-
tions. Upon subcutaneous injection of the convulsant, GABAAR
antagonist pentylenetetrazole (PTZ)33, we observed massive
changes in both WNK1 and SPAK/OSR1 phosphorylation/
activation (by 169–283% and 271–169%, respectively), as well
as KCC2 T906, KCC2T1007, and NKCC1 T203/T207/T212
phosphorylation (by 118–318%, 232–203% and 319–307%,
Fig. 10a, b, Supplementary Fig. 12) in both cortex and
hippocampus. These data demonstrate the WNK1/SPAK/
OSR1 signaling pathway can be activated in the adult brain upon
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impaired GABAAR activity to simultaneously upregulate NKCC1
and downregulate KCC2.

Discussion
Whereas KCC2 is known to be rapidly downregulated by
enhanced neuronal activity and glutamatergic neurotransmission
in mature neurons10, 12, 14, only one study so far had tested the
effect of GABA signaling on KCC2 post-translational regulation.
This study showed that increased GABAergic transmission leads
to KCC2 downregulation34. However, this study was carried out
in immature neurons with depolarizing GABAAR-mediated
responses and associated activation of VDCC and intracellular
Ca2+ signaling. In the present study, we asked instead whether
KCC2 may be regulated by GABAAR-mediated inhibition in
mature neurons. Our results reveal a rapid regulation of KCC2
membrane trafficking and transporter function by GABAAR-
dependent inhibition. KCC2 lateral diffusion, membrane clus-
tering, and stability are regulated by GABAAR- but not GABABR-
mediated signaling. GABAAR activation leads to KCC2 confine-
ment, while GABAAR blockade increases KCC2 membrane
dynamics, reducing its membrane aggregation, stability and
activity. Our data uncover a novel homeostatic mechanism that
may serve for “auto-tuning” of GABAergic signaling via rapid
regulation of KCC2-mediated Cl− export. Our work also
demonstrates that Cl− ions may act as genuine intracellular sec-
ond messengers in neurons to modulate KCC2 phosphorylation
through the WNK signaling pathway.

Different subpopulations of KCC2 exist in the plasma mem-
brane, including freely diffusing transporters that are uniformly
distributed at the cell surface and slower, confined transporters
within membrane clusters. Watanabe et al.35 provided the first
evidence suggesting clustering may be directly involved in KCC2
function. Tyrosine mutation in this study was shown to reduce
KCC2 aggregation together with a significant reduction in ion
transport without significant change in membrane stability. Our
present results instead support the notion that rapid changes in
KCC2 membrane dynamics and clustering directly impact KCC2
membrane stability and neuronal Cl− homeostasis. We have
shown that glutamate receptor activation10 or blockade of
GABAARs (this study) both lead to an increase in KCC2 lateral
diffusion. In both cases, increased KCC2 diffusion was correlated
with a change in KCC2 phosphorylation (S940 depho-
sphorylation upon increased excitation; T906/T1007 phosphor-
ylation upon GABAAR blockade). Phosphorylation-dependent
alteration of membrane diffusion therefore represents one of the
first mechanisms regulating KCC2 membrane expression and
function. We propose as a working model that T906/T1007
phosphorylation as well as S94010 dephosphorylation may induce
conformational changes36 leading to altered interaction with
scaffolding molecules or oligomerization of the transporter that in
turn may promote cluster dispersion. Freely diffusing transpor-
ters may then become available for internalization.

Blockade of GABAAR-mediated transmission and increased
neuronal activity both lead to an increase in KCC2 lateral diffu-
sion. While neuronal excitation modulates KCC2 diffusion and
membrane stability via Ca2+-dependent dephosphorylation of
S94010, 12, we show that neuronal inhibition regulates KCC2
membrane dynamics independently of Ca2+ and S940. Instead,
Cl−-dependent changes in WNK1 kinase activity link GABAAR
signaling to T906/T1007 phosphorylation (Supplementary
Fig. 13).

Although WNK1 is activated by low [Cl−]i, it is however more
active in immature neurons in which [Cl−]i is higher than in
mature neurons17, 26, 37. This apparent paradox may reflect the
expression pattern of WNK3, which is inversely correlated to that

of KCC2 during neuronal development38. WNK3 shows weak
sensitivity to chloride and is able to activate WNK125, 39. Strong
expression of WNK3 in immature neurons and subsequent
WNK1 activation may then render WNK1 insensitive to [Cl]i in
immature neurons. Reduced expression of WNK3 in mature
neurons would then enable regulation of WNK1 activity by
changes in [Cl]i.

Activation of GABAergic synapses leads to changes in [Cl−]i40.
Changes in the activity of GABAergic synapses could hence
rapidly alter KCC2 membrane expression through WNK1-
dependent KCC2 phosphorylation. Changes in GABAAR activa-
tion and a subsequent increase in KCC2 confinement would
maintain KCC2-mediated Cl− extrusion and help counteract Cl−

influx through GABAARs.
We propose that gabazine lowers [Cl]i by decreasing Cl− influx

through GABAAR, and this reduces KCC2 activity via WNK1-
dependent regulation of its membrane stability. However, we
showed an increase, not a decrease in [Cl]i (Figs. 4b, 8) after
neuronal exposure to gabazine. This may be due to the fact that
changes in [Cl]i upon gabazine application occur on different
time scales. Although SuperClomeleon imaging could not detect
an immediate drop in [Cl]i upon gabazine application, we
observed a delayed increase in [Cl]i that is consistent with our
electrophysiological recordings. We propose that gabazine
application leads to a transient drop in [Cl−]i that in turn acti-
vates the WNK/SPAK/OSR signaling pathway leading to KCC2
phosphorylation on T906 and T1007. This effect is likely to
persist well beyond the initial drop in [Cl]i as it will be reversed
through the recruitment of PP1 phosphatase41, 42. Persistent
KCC2 inactivation by threonine phosphorylation would then be
expected to translate into a rise in [Cl−]i, consistent with our
electrophysiological and chloride imaging data.

GABAAR-dependent regulation of KCC2 may then not only
allow neurons to rapidly react to changes in [Cl−]i but also permit
the neuron to conserve energy. Indeed, for every Cl− ion extruded
by KCC2, the transporter uses the energy of the electrochemical
gradient of one K+ ion. The Na+/K+ ATPase that generates the K+

gradient required for KCC2 function is a major energy consumer
in the brain43–45. Even though the highest energetic cost of the Na
+/K+-ATPase will be used to restore the resting potential of the
cell after neuronal firing44, 46, maintaining low [Cl−]i is associated
with high metabolic cost31. Under physiological conditions, rapid
redistribution of KCC2 in the membrane might enable neurons to
conserve energy by keeping surface KCC2 molecules at the
minimum required density to keep EGABA hyperpolarized.
Diffusion-trap of KCC2 is hence a very rapid mechanism to
adjust the number of KCC2 molecules in the membrane to ensure
functional Cl− homeostasis in neurons.

Finally, our biochemical data indicate that modulation of
GABAAR activity translates not only into a change in KCC2 but
also NKCC1 phosphorylation. Given the opposite effect of
phosphorylation on KCC2 and NKCC1 activity (activating for
NKCC1, inhibitory for KCC2), regulation of the WNK-SPAK
pathway is a very efficient mechanism to adjust neuronal Cl−

homeostasis. Impairment of this pathway has been linked to
dysregulated Cl− homeostasis in schizophrenia, autism, and epi-
lepsy47–50. We further demonstrate here that this signaling
pathway is rapidly and massively activated in an acute epilepsy
model. This pathway could therefore be an attractive target to
restore Cl− homeostasis for therapeutic benefit.

Methods
Neuronal culture. All animal procedures were carried out according to the Eur-
opean Community Council directive of 24 november 1986 (86/609/EEC), the
guidelines of the French Ministry of Agriculture and the Direction Départementale
de la Protection des Populations de Paris (Institut du Fer à Moulin, Animalerie des
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Rongeurs, license C 72-05-22). All efforts were made to minimize animal suffering
and to reduce the number of animals used.

Primary cultures of hippocampal neurons were prepared as previously
described10 with some modifications of the protocol. Briefly, hippocampi were
dissected from embryonic day 18 or 19 Sprague-Dawley rats of either sex. Tissue
was then trypsinized (0.25% v/v), and mechanically dissociated in 1× HBSS
(Invitrogen, Cergy Pontoise, France) containing 10 mM HEPES (Invitrogen).
Neurons were plated at a density of 120 × 103 cells/ml onto 18-mm diameter glass
coverslips (Assistent, Winigor, Germany) pre-coated with 50 µg/ml poly-D,L-
ornithine (Sigma-Aldrich, Lyon, France) in plating medium composed of
Minimum Essential Medium (MEM, Sigma) supplemented with horse serum (10%
v/v, Invitrogen), L-glutamine (2 mM) and Na+ pyruvate (1 mM) (Invitrogen). After
attachment for 3–4 h, cells were incubated in culture medium that consists of
Neurobasal medium supplemented with B27 (1X), L-glutamine (2 mM), and
antibiotics (penicillin 200 units/ml, streptomycin, 200 µg/ml) (Invitrogen) for up to
4 weeks at 37 °C in a 5% CO2 humidified incubator. Each week, one fifth of the
culture medium volume was renewed.

Neuro2a culture. Neuro2a cells were obtained from DSMZ (ACC-148). Their
origin was confirmed by COI DNA barcoding and they have been tested for
mycoplasma contamination by DAPI, microbiological culture, RNA hybridization
and PCR assays. Neuro2a cells were grown in DMEM GlutaMAX (Invitrogen)
supplemented with 1 g/L glucose and 10% fetal bovine serum.

DNA constructs. The KCC2-Flag construct was generated by insertion of three
Flag sequences in the second predicted extracellular loop of KCC210. This
recombinant Flag-tagged KCC2 transporter was shown to retain normal traffic and
function in transfected hippocampal neurons10. KCC2-Flag constructs with
Threonine residues 906 and 1007 mutated to glutamate (T906/1007E) or alanine
(T906/1007 A) were generated by Genscript (Piscataway, USA). Threonine
nucleotide sequence was changed to GCA for alanine substitution and to GAG for
glutamate substitution. cDNA from E18.5 rat brain was used as a template for the
amplification of WNK3 coding transcript. Primers were chosen to amplify three
overlapping fragments using Phusion DNA polymerase (Thermofisher Scientific).
To obtain N-terminal HA-tagged WNK3, the purified PCR fragments were
directionally assembled to a pCAGGS-HA linearized plasmid using In-Fusion HD
cloning kit (Clontech) following manufacturer’s guidelines. ShRNAs against rat
WNK3 were designed and cloned into pGeneclipU1(GFP) (Promega) following
manufacturer’s protocol. The following target sequences were used: shRNA #1: 5′-
GAACCTTAAAGACGTACTTAA-3′ and shRNA #2: 5′-GAACGCCTTCGAG-
CAACTAAA-3′. All the constructs were sequence-verified by Beckman Coulter
Genomics. The following constructs were also used: KCC2-Flag-S940D10, eGFP
(Clontech), glycine receptor α1 subunit32 (kindly provided by A. Triller, ENS,
Paris), gephyrin-mRFP51 (kindly provided by A. Triller, ENS, Paris), homer1c-
GFP52 (kindly provided by D. Choquet, IIN, Bordeaux, France), WNK1 with
“kinase-dead, dominant-negative domain” (WNK1-KD, D368A), “constitutively
active” WNK1 (WNK1-CA, S382E), shRNA against rat WNK1 mRNA (shWNK1),
a scrambled shRNA sequence “shMock”17 (kindly provided by I. Medina, INMED,
Marseille) and SuperClomeleon22 (kindly provided by G.J. Augustine, NTU, Sin-
gapore). All constructs were sequenced by Beckman Coulter Genomics (Hope End,
Takeley, U.K).

Transfection and transduction. Neuronal transfections were carried out at DIV
13–14 using Lipofectamine 2000 (Invitrogen) or Transfectin (BioRad, Hercules,
USA), according to the manufacturers’ instructions (DNA:transfectin ratio 1 µg:3
µl), with 1–1.5 µg of plasmid DNA per 20 mm well. The following ratios of plasmid
DNA were used in co-transfection experiments: 0.5:0.4:0.3 µg for KCC2-Flag or
KCC2-Flag-T906/T1007A or KCC2-Flag-T906/T1007E or KCC2-Flag-S940D
together with gephyrin-mRFP and homer1c-GFP; 0.9:0.1 µg for KCC2-Flag or
KCC2-Flag-T906/T1007A or KCC2-Flag-T906/T1007E with eGFP or glycine
receptor α1 subunit with eGFP; 0.5:0.5 µg for KCC2-Flag or KCC2-Flag-T906/
T1007A or KCC2-Flag-T906/T1007E with shWNK1 or shMock or WNK1-KD or
WNK1-CA or KCC2-Flag with SuperClomeleon or KCC2-Flag with shNT;
0.5:0.5:0.5 µg for KCC2-Flag with shWNK3 #1 and shWNK3 #2. Experiments were
performed 7–10 days post-transfection.

Primary hippocampal cultures were infected at DIV 14 with an AAV1.hSyn.
eNpHR3.0-eYFP.WPRE.hGH (Title = 1.6 e12, Upenn Vector Core) at a multiplicity
of infection (MOI) of 10. The pAAV-hSyn-eNpHR 3.0-EYFP was a gift from Karl
Deisseroth (Addgene plasmid #26972). Neurons were used 7 days after
transduction.

Neuro2a cells were transfected using Transfectin (Biorad) according to the
manufacturers’ instructions (DNA:transfectin ratio 1 µg:3 µl), with 1–1.5 µg of
plasmid DNA per 60 mm well. Cells were transfected with 1 µg of SuperClomeleon;
0.5:0.5 µg of KCC2-Flag with shNT or shWNK3 #1 or shWNK3 #2; 0.5:0.5:0.5 µg of
KCC2-Flag with shWNK3 #1 and shWNK3 #2. Protein expression was allowed in
growth medium for 48–72 h after transfection before use.

Pharmacology. The following drugs were used: TTX (1 µM; Latoxan, Valence,
France), R,S-MCPG (500 µM; Abcam, Cambridge, UK), Kynurenic acid (1 mM;

Abcam), NBQX (10 µM; Tocris), R,S-APV (100 µM; Tocris), VU0240551 or
VU0463271 (10 µM; Sigma), CGP52432 (20 µM; Tocris Bioscience, Lille, France),
baclofen (20 µM; Tocris), gabazine (10 µM; Abcam), muscimol (10 µM; Abcam),
L655,708 (50 µM; Tocris Bioscience), closantel (10 µM; Sigma), picrotoxin (100 µM;
Tocris), Cadmium chloride (100 µM; Sigma). R,S-MCPG and baclofen were pre-
pared in equimolar concentrations of NaOH; TTX in 2% citric acid (v/v);
VU0240551, closantel and picrotoxin in DMSO (Sigma). Equimolar DMSO con-
centrations were used for control experiments in these conditions. For SPT
experiments, neurons were transferred to a recording chamber, pre-incubated in
presence of drugs at 31 °C for 10 min in imaging medium (see below for compo-
sition) and used within 45 min in presence of the appropriate drug for imaging. For
calcium imaging in presence of TTX + KYN +MCPG + Cd2+, cells were pre-
incubated 5–10 min in presence of these drugs in imaging medium during the
Fluo4-AM hydrolysis, and gabazine was applied after a stable fluorescence baseline
was obtained. For calcium imaging in absence of TTX + KYN +MCPG + Cd2+,
cells were pre-incubated 5–10 min in imaging medium during the Fluo4-AM
hydrolysis, and NMDA was applied after a stable fluorescence baseline was
obtained. For biochemistry and immunofluorescence experiments, drugs were
added directly to the culture medium for 30 min in a CO2 incubator set at 37 °C.
The imaging medium consisted of phenol red-free minimal essential medium
supplemented with glucose (33 mM; Sigma) and HEPES (20 mM), glutamine (2
mM), Na+-pyruvate (1 mM), and B27 (1×) from Invitrogen. The 138 mM [Cl–]
extracellular solution was composed of 2 mM CaCl2, 2 mM KCl, 3 mM MgCl2, 10
mM HEPES, 20 mM glucose, 126 mM NaCl, 15 mM Na methanesulfonate; the 0
mM [Cl–] extracellular solution was made of 1 mM CaSO4, 2 mM K methane-
sulfonate, 2 mM MgSO4, 10 mM HEPES, 20 mM glucose, 144 mM Na
methanesulfonate.

Live cell staining for single-particle imaging. Neurons were stained as described
previously53. Briefly, cells were incubated for 3–5 min at 37 °C with primary
antibodies against Flag (mouse, 1:700, Sigma, cat #F3165), washed, and incubated
for 3–5 min at 37 °C with biotinylated Fab secondary antibodies (goat anti-mouse:
1:700; Jackson Immuno research, cat #115-067-003, West Grove, USA) in imaging
medium. After washes, cells were incubated for 1 min with streptavidin-coated
quantum dots (QDs) emitting at 605 nm (1 nM; Invitrogen) in borate buffer (50
mM) supplemented with sucrose (200 mM) or in PBS (1 M; Invitrogen) supple-
mented with 10% Casein (v/v) (Sigma).

Single-particle tracking and analysis. Cells were imaged as previously descri-
bed10 using an Olympus IX71 inverted microscope equipped with a 60X objective
(NA 1.42; Olympus) and a Lambda DG-4 monochromator (Sutter Instrument) or a
120W Mercury lamp (X-Cite 120Q, Lumen Dynamics). Individual images of
gephyrin-mRFP and homer1c-GFP, and QD real time recordings (integration time
of 30 ms over 1200 consecutive frames) were acquired with an ImagEM EMCCD
camera and MetaView software (Meta Imaging 7.7). Cells were imaged within 45
min following appropriate drugs pre-incubation.

QD tracking and trajectory reconstruction were performed with homemade
software (Matlab; The Mathworks, Natick, MA) as described in refs 10, 53. One to
two sub-regions of dendrites were quantified per cell. In cases of QD crossing, the
trajectories were discarded from analysis. Trajectories were considered synaptic
when overlapping with the synaptic mask of gephyrin-mRFP or homer1c-GFP
clusters, or extrasynaptic for spots two pixels (380 nm) away54. Values of the mean
square displacement (MSD) plot vs. time were calculated for each trajectory by
applying the relation:

MSDðnτÞ ¼ 1
N � n

XN�n

i¼1

x iþnð Þ � xi
� �2þ y iþnð Þ � yi

� �2h i
;

where τ is the acquisition time, N is the total number of frames, n and i are positive
integers with n determining the time increment. Diffusion coefficients (D) were
calculated by fitting the first four points without origin of the MSD vs. time curves
with the equation: MSDðnτÞ ¼ 4Dnτ þ b; where b is a constant reflecting the spot
localization accuracy. Depending on the type of lamp used for imaging, the QD
pointing accuracy is ~20–30 nm, a value well below the measured explored areas
(at least 1 log difference). Synaptic dwell time was defined as the duration of
detection of QDs at synapses on a recording divided by the number of exits as
detailed previously55, 56. The explored area of each trajectory was defined as the
MSD value of the trajectory at two different time intervals of at 0.42 and 0.45 s57.
The number of QDs vary from one cell to another and from one condition to
another in a given experiment. To avoid giving too much weight to a condition
with larger numbers and in order to compare the conditions between them within
the same culture, the number of QDs in each condition was adjusted to the number
of QDs of the condition with the smallest number. For conditions with large
numbers, values were sorted randomly using the ALEA function of Excel 2013
before data extraction.

Chloride imaging. Calibration of SuperClomeleon was performed in Neuro2a cells.
Extra and intracellular chloride were equilibrated using the K+/H+ ionophore
nigericin and the Cl/OH antiporter tributyltin as described22. Cells were perfused
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with a solution containing nigericin (10 µM, Sigma), tributyltin chloride (10 µM,
Sigma) and (in mM) EGTA 2, K-gluconate 2, MgCl2/Mg sulfonate 2, HEPES 10,
glucose 20 and NaCl/Na gluconate ranging from 0 to 138 (pH 7.4). Neuro2a cells
and neurons were imaged at 35 °C in a temperature-controlled open chamber
(BadController V, Luigs and Neumann, Ratingen, Germany). Two-photon imaging
was performed using an upright LeicaTCS MP5 microscope equip with resonant
scanner (8 kHz), a Leica ×25/0.95 HCX IRAPO immersion objective and a tunable
Ti:sapphire laser (Coherent Chameleon Vision II) with dispersion correction set to
820 nm for CFP excitation. The emission path consisted of an initial 700 nm low-
pass filter to remove excess excitation light (E700 SP, Chroma Technologies), 506
nm dichroic mirror for orthogonal separation of emitted signal, 483/32 CFP
emission filter, 535/30 YFP emission filter (FF506-Di01-25 36; FF01-479/40; FF01-
542/50; Brightline Filters; Semrock) and two-channel Leica HyD detector for
simultaneous acquisition. For Neuro2a imaging, due to the high-expression and
low-dark noise of the HyD photodetectors, detector gain was typically set at 10%
with a laser power at 5%. For neurons imaging, due to the expression variability
and lower expression of the sensor compared with Neuro2a transfection, detector
gain of the HyD photodetectors was typically set at 50–100% with laser power at
7%. Z-stack images (16-bit; 512 × 512) were typically acquired every 30 s. The z-
step size was 1 µm and total stack size was typically 20–30 sections depending on
the neurons. Images were processed in ImageJ by using maximum z-projections
followed by the correction of minor coverslip drifts using StackReg macro58.
Regions of interest (ROIs) were selected for measurement if they could only be
measured over the whole experiment. Raw CFP and YFP intensity measurements
for the entire recording were imported into Microsoft Excel. Background fluores-
cence (measured from a non-fluorescent area) was subtracted and a fluorescence
ratio was calculated for each time point in each ROI series and was normalized to
the average baseline ratio for each respective ROI (average of the first four frames
before treatment). Statistical analysis was performed in SigmaPlot 12.5. Wilcoxon
rank-sum test (or paired t-test when normality test passed) was used to compare
the mean responses before and upon pharmacological treatment.

Calcium imaging. Neurons at DIV21-25 were loaded with 0.5 mM Fluo-4AM
(Invitrogen) for 5 min at 37 °C in imaging medium. After washing excess dye, cells
were further incubated for 5–10 min to allow hydrolysis of the AM ester. Cells were
imaged at 37 °C in an open chamber mounted on an inverted spinning-disc
microscope (Leica DMI4000, Yokogawa CS20 spinning Nipkow disk, ×40/0.6 N.A.
objective). All washes, incubation steps, and cell imaging were performed in
imaging medium. Fluo4-AM was illuminated using 491 nm light from a diode.
Emitted light was collected using a 525-39 (±25) nm emission filter. Time lapse
(0.33 Hz for 600 s) of confocal stacks (of ~35 images acquired with an interval of
0.3 µm) were acquired with a cooled EM-CCD camera (512 × 512, 16 µm pixel size)
using Metamorph. The analysis was performed on a section of the stack where the
soma was in focus at different time points. Fluorescence intensities collected in the
soma before (F0) and following (F) bath addition of the drugs, were background-
subtracted before being displayed as F/F0 values. The data were analyzed using
Metamorph. Normalization of fluorescence intensity was performed for each cell
by dividing the mean fluorescence intensity by the average of fluorescence inten-
sities of the four time points before drug application. Statistics (paired t-test) were
run on the last time point before drug application (120 s) compared with the latest
time point after drug application (600 s).

Immunocytochemistry. KCC2-Flag membrane clustering was assessed with live
cell staining. Pre-treated neurons expressing KCC2-Flag were washed in imaging
medium and incubated for 20 min at 4 °C with mouse primary antibody against
Flag (1:400; Sigma, cat #F3165) in imaging medium in the presence of the
appropriate drugs. After washes with imaging medium, cells were fixed for 15 min
at room temperature (RT) in paraformaldehyde (PFA; 4% w/v; Sigma) and sucrose
(20% w/v; Sigma) solution in 1× PBS. The cells were then washed in PBS and
incubated for 30 min at RT in goat serum (GS; 20% v/v; Invitrogen) in PBS to block
non-specific staining. Neurons were then incubated for 45 min at RT with Cy5-
conjugated goat anti-mouse antibodies (1.9 g/ml; Jackson Immuno Research, cat
#115-175-205) in PBS–GS blocking solution, washed, and mounted on slides. To
assess spine morphology pre-treated KCC2-Flag and eGFP co-transfected cells
were fixed for 15 min at room temperature (RT) and washed in 1× PBS. Coverslips
were mounted on slides with mowiol 844 (48 mg/ml; Sigma).

Fluorescence image acquisition and analysis. Image acquisition was performed
using a ×100 objective (NA 1.40) on a Leica (Nussloch, Germany) DM6000 upright
epifluorescence microscope with a 12-bit cooled CCD camera (Micromax, Roper
Scientific) run by MetaMorph software (Roper Scientific, Evry, France). Quantifi-
cation was performed using MetaMorph software (Roper Scientific). Image folders
were randomized before analysis. For morphological spine analysis exposure time
was adjusted for each eGFP image to obtain best fluorescence to noise ratio and to
avoid pixel saturation. For each neuron a well-focused dendrite was chosen, spine
heads were manually delimited and their area were quantified. To assess KCC2-
Flag clusters, exposure time was fixed at a non-saturating level and kept unchanged
between cells and conditions. For cluster analysis, images were first flatten back-
ground filtered (kernel size, 3 × 3 × 2) to enhance cluster outlines, and a user

defined intensity threshold was applied to select clusters and avoid their coales-
cence. Clusters were outlined and the corresponding regions were transferred onto
raw images to determine the mean KCC2–Flag cluster number, area and fluores-
cence intensity. The dendritic surface area of the region of interest was measured to
determine the number of clusters per 10 µm2. For each culture, we analyzed ~10
cells per experimental condition and ~100 clusters or ~15 spines per cell.

Total RNA extraction and cDNA synthesis. Total RNA extraction was performed
on DIV 21 hippocampal cultures using RNeasy Mini kit (Qiagen, Venlo, The
Netherlands) and on Sprague-Dawley rat (13 weeks) hippocampus tissue using
RNAsolv (Omega Bio-tek, Norcross, GA) according to manufacturer’s instructions.
Genomic DNA was removed by digestion with Amplification Grade DNase I
(Sigma-Aldrich). First-strand cDNA was synthesized by reverse transcription of 1
μg of total RNA using Superscript-II and random primers (Invitrogen) according
to standard protocols. Reverse transcriptase was absent in some samples as negative
control.

Quantitative real-time PCR. Relative expression levels of WNK1-4 mRNA were
determined by real time RT-PCR using Absolute SYBR Green Mix (ABgene,
Epsom, UK) and the following set of primers: WNK1-for (5′-AAGGTCTGGA-
CACCGAAACC-3′), WNK1-rev (5′-TTCCCTTTTACTGTGGATTCCC-3′),
WNK2-for (5′-CATGACATGGAGGCCTCTGG-3′), WNK2-rev (5′-CGGGCT
TTTCACTCTCAGGA-3′), WNK3-for (5′-CATCACAGGACCCACTGGAT-3′),
WNK3-rev (5′-AGCCATTTCCAACATACACATC-3′), WNK4-for (5′-GCTGCA
AACTCACAACAGCA-3′), and WNK4-rev (5′-CTCAGGAATCCGTCTCG
CTC-3′). Data were analyzed with the 2–DCt method, and values normalized to
WNK1 expression level.

Surface biotinylation in cultures. Pre-treated neuronal cultures were washed with
ice-cold PBS three times, and then incubated in freshly prepared PBS containing
0.5–1 mg/ml EZ-Link Sulfo-NHS-SS-Biotin (Pierce, Rockford, IL, USA) at 4 °C for
30 min with gentle agitation. Biotinylation was stopped by addition of Tris-HCl
(50 mM; pH 7.4) and cells lysed in in modified RIPA buffer (50 mM Tris-HCl (pH
7.4), 150 mM NaCl, 1% Nonidet P-40, 0.5% DOC, 0.1% SDS, 50 mM NaF, 1 mM
Na3VO4 and protease and phosphatase inhibitors, Roche). After thoroughly
homogenizing, the samples were centrifuged and the supernatant collected. A small
fraction of the lysates was kept for input KCC2 quantification. Lysates were mixed
with 50% slurry of Neutravidin beads (Thermo Scientific) and rotated overnight at
4 °C. The beads were collected by centrifugation and washed three times in
modified RIPA buffer and one time in modified RIPA buffer without detergents.
After the last wash all solution was carefully removed from the beads, and the
biotin-bound and input fractions denatured in 6× SDS sample buffer containing
DTT at 37 °C for 1 h.

Samples were subjected to electrophoresis on polyacrylamide gels and
transferred to nitrocellulose membranes. The membranes were incubated for 30
min with Tris-buffered saline, with 1% triton (TTBS; Invitrogen) containing 5%
(w/v) skim milk. The membranes were then immunoblotted in 5% (w/v) skim milk
in TTBS with rabbit anti-KCC2 (Millipore, cat #07-432) and mouse anti-TUJ1
(R&D Systems, cat #MAB 1195) or anti-actin (SantaCruz, cat #sc-32251)
antibodies overnight at 4 °C. The blots were then washed four times with TTBS and
incubated for 1 h at room temperature with secondary fluorescent antibodies
(DyLight700 cat #610-730-002 or 800 cat #611-145-002, Rockland) diluted 5000-
fold in 5% (w/v) skim milk in TTBS. After repeating the washing steps,
fluorescence was detected using Odyssey infrared imaging system (LI-COR
Bioscience). The relative intensities of immunoblot bands were determined by
densitometry with ImageJ software. Total KCC2 protein expression was
determined as the sum of monomeric and oligomeric bands normalized to TUJ1 or
actin. Surface expression of KCC2 was determined as the ratio of monomeric +
oligomeric biotinylated KCC2 fraction vs. total KCC2 fraction.

Surface biotinylation in hippocampal slices. Biotinylation studies were per-
formed as previously described59 with modifications. Horizontal sections (500 µm)
were made from 5–7-week-old wild-type animals (C57Bl/6j, Janvier) using a Leica
vibratome in NMDG based cutting solution (in mM: NMDG 93, HCl 93, KCl 2.5,
NaH2PO4 1.2, NaHCO3 30, HEPES 20, glucose 25, ascorbic acid 5, sodium pyr-
uvate 3, MgCl2 10, CaCl2 0.5, saturated with 95% O2/5% CO2, pH 7.4, 300 mOsm).
Slices were transferred into an interface chamber at 37 °C for 10 min containing
ACSF (in mM: CaCl2 1.6, glucose 11, KCl 2.5, MgCl2 1.2, NaCHO3 26.2, NaH2PO4

1, NaCl 124, saturated with 95% O2/5% CO2, pH 7.4, 298 mOsm), followed by a 1 h
recovery period at room temperature. The slices were then placed onto a pre-
heated recording chamber in either pre-warmed bubbled ACSF or ACSF con-
taining muscimol (10 µM) for 30 min at 35 °C. The slices were transferred into
bubbled ice-cold ACSF containing 1 mg/ml EZ-Link Sulfo-NHSSS-Biotin (21326,
Thermo Scientific) with gentle rotation for 45 min at 4 °C. Excess biotin was
quenched using 1 M glycine in ice-cold ACSF for 10 min, and then the slices were
rinsed once in ice-cold ACSF and snap frozen on dry ice. The hippocampus was
micro-dissected and immediately lysed and homogenized in modified RIPA buffer
(50 mM Tris-HCl (pH 7.4), Triton X-100 1%, 150 mM NaCl, 1 mM EDTA, DOC
0.5%, NP40 1%, SDS 0.1%, 50 mM NaF, complete protease inhibitor cocktail
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(Roche)). The samples were centrifuged at 15,000 r.p.m. for 15 min, the super-
natant was collected and protein content was determined using a Pierce BCA
protein quantification kit (23227, Thermo Scientific). 50 µg of protein was loaded
onto 100 µl of 50% slurry of Pierce NeutrAvidin UltraLink Resin (53150, Thermo
Scientific), made up to a total volume of 400 µl in modified RIPA buffer and rotated
for 2 h at 4 °C. The beads were recuperated by centrifugation and thoroughly
washed four times in modified RIPA buffer, and after the last wash the beads were
incubated in ×6 SDS sample buffer containing 10% β-mercaptoethanol at 37 °C for
1 h. The protein samples were run on pre-cast Bis-Tris gels (NuPage 4–12% gra-
dient gels, NP0322, Invitrogen) and immunoblotting was performed. Analysis was
performed using ImageJ by normalizing the amount of surface KCC2 to the
amount of actin in the non-biotinylated fraction.

Immunoprecipitation and immunoblotting. Pretreated hippocampal neurons in
culture (DIV 23) were lysed in lysis buffer containing 50 mM Tris/HCl, pH 7.5, 1
mM EGTA, 1 mM EDTA, 50 mM sodium fluoride, 5 mM sodium pyrophosphate,
1 mM sodium orthovanadate, 1% (w/v) Nonidet P-40, 0.27M sucrose, 0.1% (v/v)
2-mercaptoethanol, and protease inhibitors (Roche). CCCs phosphorylated at the
KCC2 T906 and T1007 equivalent residue were immunoprecipitated (centrifuged
at 16,000×g at 4 °C for 20 min) using phosphorylation site-specific antibodies as
described27. The phosphorylation site-specific antibodies were coupled with pro-
tein-G–Sepharose at a ratio of 1 mg of antibody per 1 ml of beads in the presence of
20 µg/ml of lysate to which the corresponding non-phosphorylated peptide had
been added. Two milligrams of clarified cell lysate was incubated with 15 µg of
antibody conjugated to 15 µl of protein-G–Sepharose for 2 h at 4 °C with gentle
agitation. Beads were washed three times with 1 ml of lysis buffer containing 0.15
M NaCl and twice with 1 ml of wash buffer (50 mM Tris/HCl, pH 7.5 and 0.1 mM
EGTA). Bound proteins were eluted with 1× LDS sample buffer (Invitrogen)
containing 1% (v/v) 2-mercaptoethanol.

Cell or tissue lysates (15 µg) in SDS sample buffer were subjected to
electrophoresis on polyacrylamide gels and transferred to nitrocellulose
membranes. The membranes were incubated for 30 min with TTBS containing 5%
(w/v) skim milk. The membranes were then immunoblotted in 5% (w/v) skim milk
in TTBS with the indicated primary antibodies overnight at 4 °C. Antibodies
prepared in sheep17 were used at a concentration of 1–2 µg/ml. The incubation
with phosphorylation site-specific sheep antibodies was performed with the
addition of 10 µg/ml of the non-phosphorylated peptide antigen used to raise the
antibody. The blots were then washed six times with TTBS and incubated for 1 h at
room temperature with secondary HRP-conjugated antibodies diluted 5000-fold in
5% (w/v) skim milk in TTBS. After repeating the washing steps, the signal was
detected with the enhanced chemiluminescence reagent. Immunoblots were
developed using a film automatic processor (SRX-101; Konica Minolta Medical)
and films were scanned with a 600-dpi resolution on a scanner (PowerLook 1000;
UMAX). The relative intensities of immunoblot bands were determined by
densitometry with ImageJ software.

Antibodies used for western blots were raised in sheep and affinity-purified on
the appropriate antigen by the Division of Signal Transduction Therapy Unit
(DSTT) at the University of Dundee; other antibodies were purchased. KCC1 total
antibody (S699C, first bleed; raised against residues 1–118 of human KCC1); KCC2
total antibody (S700C, first bleed; raised against residues 1–119 of human KCC2A);
KCC3 total antibody (S701C, first bleed; raised against residues 1–175 of human
KCC3); KCC4 total antibody (S801C, first bleed; raised against residues 1–117 of
human KCC4); KCC2a phosphoT906 (S959C, first bleed; raised against residues
975–989 of human KCC3a phosphorylated at T991, SAYTYER(T)LMMEQRSRR);
KCC2a phosphoT1007 (S961C, first bleed; raised against residues 1032–1046 or
1041–1055 of human KCC3a phosphorylated at T1048). NKCC1 total antibody
(S022D, second bleed; raised against residues 1–288 of human NKCC1); NKCC1
phospho-T203/T207/T212 antibody (S763B, third bleed; raised against residues
198–217 of human NKCC1 phosphorylated at T203, T207, and T212, HYYYD(T)
HTN(T)YYLR(T)FGHNT); WNK1-total antibody (S079B, second bleed; raised
against residues 2360–2382 of human WNK1); WNK1phospho-S382 antibody
WNK1-phospho-Ser382 antibody (S099B, second bleed; raised against residues
residues 377–387 of human WNK1 phosphorylated at S382, ASFAK(S)VIGTP);
WNK3-total antibody (S156C, second bleed; raised against residues 1142–1461 of
human WNK3); SPAK-total antibody (S551D, third bleed; raised against full-
length GST-tagged human SPAK protein); OSR1-total antibody (S850C, second
bleed; raised against RSAHLPQPAGQMPTQPAQVSLR, residues 389–408 of
mouse OSR1); SPAK/OSR1 (S-motif) phosphoS373/S325 antibody (S670B, second
bleed; raised against 367–379 of human SPAK, RRVPGS(S)GHLHKT, which is
highly similar to residues 319–331 of human OSR1 in which the sequence is
RRVPGS(S)GRLHKT). KCC2 total antibody (residues 932–1043 of rat KCC2) was
purchased from NeuroMab. The anti-β-Tubulin III (neuronal) antibody (T8578)
was purchased from Sigma-Aldrich. Secondary antibodies coupled to horseradish
peroxidase used for immunoblotting were obtained from Pierce. IgG used in
control immunoprecipitation experiments was affinity-purified from pre-immune
serum using Protein G-Sepharose.

Gramicidin perforated patch recordings. Experiments were performed on cells
after 20–24 days in culture. Neurons were selected based on their GFP fluorescence
indicating co-expression of GFP with glycine receptors. Recordings were made

using an Axopatch 200B amplifier (Molecular Devices), filtered at 5 kHz and
digitized at 20 kHz. Neurons were perfused with extracellular solution (in mM) 125
NaCl, 20 D-glucose, 10 HEPES, 4 MgCl2, 2 KCl, 1 CaCl2, pH 7.4 containing TTX
(1 µM), kynurenate (1 mM) and R,S-MCPG (500 µM) in a recording chamber
(BadController V; Luigs and Neumann) at 31 °C mounted on an upright micro-
scope (BX51WI; Olympus). Gramicidin perforated (50 µg/ml) patch recordings
were performed using glass pipettes with a standard internal solution (in mM) 120
K-gluconate, 10 KCl, 10 HEPES, 0.1 EGTA, 4 MgATP 2H20, 0.4 Na3GTP 2H20,
pH 7.4. Recordings were made in voltage-clamp mode using an Axopatch 200B
amplifier (Molecular Devices) and filtered at 2 kHz and digitized at 20 kHz. The
membrane potential was held at −65 mV and depolarizing voltage steps were
applied from −30 to +30 mV for 3 s, during which time either 100 µm glycine was
puffed onto the soma using a Picospritzer (Parker Hannifin) or Rubi-GABA (15
µM; Tocris) was photolyzed at the soma using a digital modulated diode laser beam
at 405 nm (Omicron Deepstar; Photon Lines) as previously described3. Glycinergic
and GABAergic post-synaptic currents were measured and a linear regression of
the current-voltage relationship was used to determine Eglycine or EGABA, respec-
tively. Access and input resistance were monitored using a −5 mV step as pre-
viously described3. Voltages were corrected for the liquid junction potential (−16.2
mV) and access resistance was compensated offline.

Whole-cell patch clamp recordings. Neurons were recorded at 31 °C under
superfusion with artificial cerebrospinal fluid containing (in mM) 125 NaCl, 20 D-
glucose, 10 HEPES, 4 MgCl2, 2 KCl, 1 CaCl2 (pH= 7.4). Whole-cell recordings
measuring GABABR currents were made with glass pipettes containing the fol-
lowing internal solution (in mM): 110 K-methylsulfonate, 20 KCl, 10 HEPES, 10
EGTA, 4 MgATP, 0.4 Na3GTP, 10 Na phosphocreatine, 1.8 MgCl2. Recordings
were made in the presence of TTX (1 μM), kynurenate (1 mM), and R,S-MCGP
(500 μM), and bicuculline (20 µM). In current-clamp configuration the resting
membrane potential (Vm) was monitored for 5 min to ensure a stable baseline,
followed by the addition of bath applied baclofen (20 µM). Once Vm reached a
steady-state in the baclofen treatment, the drug was either washed out or the
GABABR antagonist CGP52132 (20 µM) was added to the bath. The Vm was
monitored until it reached a steady-state. Whole-cell patch clamp recordings were
performed with borosilicate glass micropipettes filled with either (in mM) 135
CsCl, 10 HEPES, 10 EGTA, 4 MgATP and 0.4 Na3GTP (pH = 7.4) for recording
tonic, GABAAR-mediated currents or 105 CsMeSO4, 10 CsCl, 10 HEPES, 10
EGTA, 4 MgATP, and 0.4 Na3GTP for recording muscimol-evoked currents. Cells
were held at −70 mV. GABAAR-mediated currents were recorded in the presence
of TTX (1 µM), NBQX (10 µM) and D,L-APV (100 µM). Access and input resis-
tance were regularly monitored with −5 mV voltage steps. All recordings were
made using an Axopatch 200B amplifier (Molecular Devices), filtered at 2 kHz and
digitized at 25 kHz. All the data were collected using the Clampex 10 program and
analyzed using Clampfit 10 (Axon). Currents were analyzed offline using Clampfit
software.

In vivo pentylenetatrazole injection. Adult (postnatal day 84-91) C57bl6 mice
(all males from JanvierLabs) were injected subcutaneously with pentylenetatrazole
(PTZ, 75 mg/kg, dissolved in saline), and recorded right after injection using video
recordings. The procedure was made in accordance with the guidelines of the
French Agriculture and Forestry Ministry for handling animals and with the
agreement of the Comité National de Réflexion Ethique sur l’Expérimentation
Animale (#4018). The sampling of animals, as well as the experimental procedure
and analysis of the data were determined based on previous published work. The
animals to be used for PTZ vs. Control conditions were randomly chosen from the
batch of C57bl6 mice delivered from JanvierLabs. After 20-35 min of observation,
animals were killed by cervical dislocation, brains were rapidly extracted on ice and
the cortex and the hippocampus were dissected, frozen in liquid nitrogen and
stored at –80 °C until use for biochemistry. The first seizures were observed after
6–7 min of injection and a second sequence of seizures and/or abnormal gait were
detected after 14–15 min. Two out of three animals injected with 75 mg/kg of PTZ
had tonic-clonic seizures with rigid paw extension followed by death and one
animal showed only partial clonus (as defined using Racine's scale).

Statistics. Sampling corresponds to the number of quantum dots for SPT, number
of cultures or animals for biochemistry, cells for ICC, chloride and calcium ima-
ging, and electrophysiology experiments. Sample size selection for experiments was
based on published experiments, pilot studies, as well as in-house expertise. All
results were used for analysis except in few cases. For imaging experiments
(chloride and calcium imaging, SPT, immunofluorescence), cells with signs of
suffering (apparition of blobs, fragmented neurites) were discarded from the
analysis. For PTZ-treatment in vivo, one animal with an incorrect injection site was
excluded from analysis. Means are shown± SEM, median values are indicated with
their interquartile range (IQR, 25–75%). Means were compared using the non-
parametric Mann–Whitney test (immunocytochemistry, dwell time comparison),
paired t-test (calcium imaging), Wilcoxon rank-sum test or paired t-test when
normality test passed (chloride imaging) or two-tailed Student’s t-test (biochem-
istry and gramicidin-perforated patch clamp) using SigmaPlot 12.5 software (Systat
Software). Diffusion coefficient and explored area values having non-normal
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distributions, a non-parametric Kolmogorov–Smirnov test was used. Median
values were compared using the Kolmogorov–Smirnov test under Matlab (The
Mathworks, Natick, MA). Differences were considered significant for p-values less
than 5% (*p≤ 0.05; **p< 0.01; ***p< 0.001; NS, not significant).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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