¢-ANALOGUE OF WILSON’S THEOREM
ROBIN CHAPMAN AND HAO PAN

ABSTRACT. We give g-analogues of Wilson’s theorem for the primes congruent 1
and 3 modulo 4 respectively. And g-analogues of two congruences due to Mordell
and Chowla are also established.

1. INTRODUCTION

For arbitrary positive integer n, let

1—q" _1

Clearly lim, ,;[n], = 1, so we say that [n], is a g-analogue of the integer n. Sup-
posing that a = b (mod n), we have

[(l] _ 1_qa _ 1_qb+qb(1_qaib)
T o1l-gq 1—gq 1—gq
Here the above congruence is considered over the polynomial ring in the variable ¢
with integral coefficients. And g-analogues of some arithmetical congruences have
been studied in [9, 1, 7, §].
Let p be a prime. The well-known Wilson theorem states that

(p—1!'=1 (mod p).

1—qb_

[bl,  (mod [n],).

Unfortunately, in general,

p—1

H[j]q # —q¢" (mod [p],)

j=1
for any integer n. However, we have the following g-analogue of Wilson’s theorem
for a prime p =3 (mod 4).

Theorem 1.1. Suppose that p > 3 is a prime and p = 3 (mod 4). Then we have

p—1

[I0ly =—-1 (wmod [p]). (1.1)

j=1
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In [6] (or see [10, Theorem 8]), Mordell proved that if p > 3 is a prime and p = 3
(mod 4) then

(251)= 02 i) 02

where h(—p) is the class number of the quadratic field Q(y/—p). Now we can give
a g-analogue of (1.2).
Theorem 1.2. Let p > 3 be a prime with p =3 (mod 4). Then we have

(p_l)/2 h(=p)+1
[T Ulgs =(=1)"="¢ (mod [p],). (1.3)
j=1
The case p = 1 (mod 4) is a little complicated. Let (}—0) denote the Legendre
symbol modulo p. It is well-known that for any a prime to p, (%) =1or —1

according to whether a is a quadratic residue modulo p. Let ¢, and h(p) be the
fundamental unit and the class number of Q(,/p) respectively.

Theorem 1.3. Suppose that p is a prime and p =1 (mod 4). Then we have

p—1 p—1
[[ile=4a+B > ¢ (modIp,), (1.4)
()
where
2h(p) —2h(p) 2h(p) _ _—2h(p) 2h(p) _ _—2h(p)
Ep  t+éEp €p Ep and B — €p Ep

A:

2 2/ NG

Write e, = (up+vp/p)/2 Where u,, v, are positive integers with the same parity.
Clearly u — pv2 = £4 since ¢, is an unit. Letting ¢ — 1 in (1.4), we obtain that

B(p—1) gih(p) + 8;Zh(p) B ugh(p)
2 2 ~ 22h(n)
It follows that h(p) is odd and the norm of ¢, is always —1, i.e., ug — pvg = —4.
In [4] (or see [10, Theorem 9]), Chowla extended Mordell’s result (1.2) for p =1
(mod 4). Let h(p) and €, = (u, + v,,/P)/2 be defined as above. Then Chowla
proved that

—l=(p-1=A+

(mod p).

h(p)+1

<p;1)! (‘”22 “  (mod p). (1.5)

Now we have the following g-analogue of Chowla’s congruence:

Theorem 1.4. Suppose that p is a prime and p =1 (mod 4). Then
(p—1)/2 p—1 '
Il Glo=-Ca—D > ¢ (mod [p],), (1.6)

1)1
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where Wp) | _—hG) ), _—h(p) hp) | _—hip)
Ep — &p Ep +¢€p and Dzsp +€p

2 N P

Let us explain why (1.6) implies (1.5). Letting ¢ — 1 in (1.6), it is derived that

(p _ 1)' - (SZ(p) & —h(p) 5;L(p) + 6;h(p) . p—1 6g(p) + Eph(p)>
— )

C:

+ .
2 2./p 2 NG

((up + vpy/P)/2)" P — (=t + /) /2)"

2
h(p) Aem1
_ Up 2\ M Up (=1) 2 u,
==yt = ED Y moay)

The proofs of Theorems 1.1-1.4 will be given in the next sections.

2. PrRoOOFS OF THEOREMS 1.1 AND 1.2

In this section we assume that p > 3 is a prime and p = 3 (mod 4). Write

p—1 p—1 1_ ] (»-1)/2 (p—1)/2 1— qu
H[]]qj Hl—qJ and H H e
Jj=1 Jj= j=1
Observe that
1—4q* L
ple=7— =[[-¢)
¢ i

where ¢ = e*™/P. Also we know that o, : ( — (* is an automorphism over Q(¢)
provided that p 1 s. Hence it suffices to show that

p-1 2 (p=1)/2 ;2
1-¢ 1—-¢ h(=p)+1
- = —1 and - =(—1)" 2 (.
= =

Let @ and N denote respectively the sets of quadratic residues and quadratic
non-residues of p in the interval [1,p — 1]. Then

T | P s B
H1—<J' = T o UV
LT T 0)

Uv=JJa-¢", ad V=]Ja-¢.

keQ keN
But since —1 is a quadratic non-residue modulo p,

v=lJa-¢H=][a-¢H=U]](=¢"

keQ ke ke@Q

<l

9

where
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Now
(p 1 /2 )

p -1
Sy e
keQ j=1
as p is prime to 6 and so p? = 1 (mod 24). We conclude that

UV = (=1)"7 ¢ Zreak = 1

=0 (mod p)

as desired.
Now let us begin to prove
(p1_1[/2 ClG] H(p 1)/ ( 616] ) B (_1)'1(712”)“( )
o LY IR - o)
Clearly the numerator of the left side of (2.1) is U. Let

(p—1)/2

W = H 16]
denote its denominator. Let M = {1, 2, ...,(p—1)/2}. Then W = W, W_ where
we= ] @-¢'%), and W_= [ 1-¢'%)

jEMNQ jEMNN

U
W.o— 1 — - 16ky _ ~—16k
2 (= =g I (¢
M'NQ keM’'NQ
where M' = {(p+1)/2,...,p—1}. We know (see [10, Section 1.3]) that

Now

-1)/

oty % G- 2 )

——1—2]Mﬁ N| = —1—2\M’ﬂ@| (mod 4).
Also, we have
P21 e
- :Z k= > k+ > k=Y k+ > (p—k)
keMNQ keMNN keMNQ keEM'NQ
—Zk:—Q Y k=-2 ) k (modp),
keQ keM'NQ keM'NQ

whence >, 1pno 16k =1 (mod p). Thus

U U ,
\M NQ| 16k: (1+h( —p )/2
WS W IT ¢ ¢,

keM'NQ
which confirms (2.1). O
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3. WHEN p =1 (mod 4)

Below suppose that p is a prime congruent 1 modulo 4 and ( = e*™/?. Let
@, N C [1,p — 1] be the sets of quadratic residues and quadratic non-residues of

p respectively. Let
U=]Ja-¢") and V=]J1-¢".
keQ kEN

In order to prove Theorem 1.3, we only need to show prove that

1 42 :
oy eI G - o omano v
jEN j=1 J€EQ jJEN
By the analytic class number formula [2, Chapter 1, Section 4, Theorem 2]
U= egh(p)\/]_) and V = 5;‘(”)\/1_9.
Thus U/V =g, "®) = ¢ — by/p where

9 — 6}3;@) I 6;2h(p) €7 and 2= (gf,h(”) _ 6;2h(z>))/\/ﬁ c7Z.

Also, by Gauss’s formula for the quadratic Gauss sum
p—1 .
j .
B 0SS SED WEEED o
j=1 JEN JEN
Hence
paro(1e20)
v , ’
JEN
which is clearly equivalent to (3.1).
Remark. The first author used products like [, (1 —¢7) extensively in [3].

Let us now consider the product

(p— 1/2

H glG] U
j=1 L=C% T
where
(p—1)/2
Tl o-¢
7=1

When r and s are prime to p, we have Il = 04(I1,.) where o, is the automorphism
over Q(¢) mapping ¢ to ¢*. It turns out to be convenient to compute Il15 as o4(11y).
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As p=1 (mod 4) we know that U = 5;h(p) v/P- For each r prime to p,

p—1
‘Hr|2 =1ILIL, = H(l -¢)=p
=1
so |II,| = \/p. Now
~1)/2 , ~1)/2 - ,
Iy :(pl—[)/ 1—¢Y (pl_[)/ (=) 2isin(4mj/p)
[ S ST TR § ST
(p—1)/2
=DM TI (mic¥) = (~)M (/g

j=1
:<_1)(p71)/4+MC(p271)/4

where
={1<j<(p—1)/2: sin(dnj/p) < 0}].

Note that when 0 < j < p/2, sin(47j/p) < 0 if and only if p/4 < j < p/2. So
M = (p—1)/4, and

I, = C(p2—1)/4\/]—9.

Also,
it =r(%(0)¢) =5 Q) =S ()=
Thus

g = au(CP V4 p) = ¢ = ' Vb

Assume that £p® = (¢ + d\/p)/2 where c,d are integers with the same parity.

Recall that the norm of ¢, is —1 and h(p) is odd. Hence 5,?h(p) = (—c+d/p)/2.
So

c=el®) M and  dyp =P 40,

p

As fp=—1-237 (7, we have

gfh(p) o —C‘Fd\/ﬁ _ _C—|2—d —dZCJ

po 2
JEN

Therefore

(p1_1[/2 €16] _ U _ e;h(p)\/ﬁ B c+d dZCJH
1 — (o H16 ¢'/p 2 N

j=1
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This concludes that

(p—1)/2 ctd '
H [j]qwj = — 5 q— dz qJ+1 (mod [p]q).
j=1 JEN
We are done. O
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