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Human health and behavior are regulated by a complex and extensive network of circadian clocks. 

These clocks are entrained by rhythmic signals in the environment, such as daily light exposure. In 

individuals who have irregular sleep schedules, these signals that furnish time-of-day information to 

the circadian system are less robust, which may cause circadian disruption and poor health outcomes.1 

Sleep regularity can be quantified using the Sleep Regularity Index (SRI),2 a metric that compares sleep 

patterns between consecutive days (sleeping at similar times each day results in a high SRI). The SRI 

captures day-to-day variability in bedtime, waketime, sleep duration, naps, and awakenings during 

sleep.3 Lower SRI has been associated with substantially increased risk for obesity, diabetes, 

cardiovascular disease, hypertension, and depressed mood.4-6 Although sleep regularity is now 

recognized as a critical dimension of sleep health, there are barriers to measuring and reporting sleep 

regularity consistently. First, there are no open-source options for calculating sleep regularity, 

meaning it cannot be computed with the same ease as other common sleep metrics. Second, there is 

a lack of clear benchmarks for what represents a high or low level of sleep regularity at a population 

level, both for the SRI and other sleep regularity metrics.3,4,6 We developed an open-source package 

for computing SRI from accelerometer data, and we applied it to the single largest accelerometer 

sample available to researchers, within the UK Biobank.  

The UK Biobank is one of the largest and most comprehensive human health datasets.7 In total, 

103,104 participants (age (M±SD) = 62.3±7.9 years; 56.2% female) wore a wrist accelerometer (Axivity 

AX38) to record daily rest-activity patterns for one week, between June 2013 and January 2016. We 

used the accelerometer data to estimate daily sleep onset and offset times with a validated, widely 

used R package (‘GGIR’9). Since it is not possible to correctly calculate SRI from GGIR output alone, we 

developed our own accompanying open-source R package. Our package calculated sleep-wake state 

at the epoch-level and, unlike GGIR, it allowed multiple sleep bouts per day (allowing naps, 

fragmented sleep, or awakenings to be correctly factored into SRI calculation). The package also 

identified miscalculated sleep onset/offset times (5.7% of all nights in this dataset), which can lead to 

incorrect SRI scores (see Supplementary Material). After excluding participants with fewer than five 
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days (120 hours) of 24h-separated epoch pairs containing valid sleep-wake data, the SRI was 

calculated in 60,997 participants (age (M±SD) = 62.7±7.8 years; 55.1% female).  

The SRI scores had a median of 81.0 and interquartile range of 73.8-86.3 (M±SD = 78.8±10.7), shown 

in Figure 1A with a higher score indicating more regular sleep patterns. The distribution of SRI scores 

was non-normal with negative skew (KS test, D(60,997) = 0.99, p<.0001), consistent with distributions 

reported in smaller samples,4 and 99% of individuals had SRI scores between 36.0-95.0. We observed 

a monotonic relationship between SRI and other common measures of sleep variability, including 

standard deviations in sleep onset, sleep offset, and sleep duration, shown in Figure 1B. These findings 

enable SRI scores to be related to equivalent values for other sleep variability measures, facilitating 

comparisons between studies that have reported different measures (see Supplementary Material). 

Across the sample, a cut-off of SRI<70 was comparable to SD>1.9 h for variability in sleep onset and 

offset, and SD>1.6 h for sleep duration. One in five individuals had an SRI below 71.6 (irregular), and 

one in five had an SRI above 87.3 (regular; Figure 1C).  

Sleep regularity was related to several self-reported demographic variables, collected between 2006 

and 2010. Lower SRI scores were found in those who were male (difference: -1.2, t-test, p<.0001), had 

higher material deprivation (Townsend Deprivation Index, bivariate correlation, r(60,922) = -0.11, 

p<.0001), had lower yearly household income (ANOVA, p<.0001), or had lower-level educational 

qualifications (ANOVA, p<.0001) (see Supplementary Material). Those of white ethnicity had 

significantly higher SRI than all other ethnic groups (2.6-6.8 points higher), and black ethnicity 

significantly lower (2.2-6.8 points lower; Kruskal-Wallis, p<.0001). Above the age of 65, sleep regularity 

decreased with age (bivariate correlation, r(27,918) = -0.02, p = 0.002). There was no relationship 

between age and SRI in people younger than 65 (p = 0.47), or across the whole sample age range (p = 

0.13). Shift workers exhibited significantly lower SRI scores than non-shift workers (M±SD = 75.9±12.0 

vs. 79.3±10.1, t-test, p<.0001). Employed people had significantly higher SRI than those who were 

Sick/Disabled, Unemployed, or Students (1.0-4.9 points higher), and lower SRI than Retired, 
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Home/Family Caretakers, or Volunteers (0.2-1.6 points lower; Kruskal-Wallis, p<.0001). Together, 

these findings indicate that irregular sleep-wake patterns are associated with a complex set of 

individual and environmental factors, particularly socioeconomic disadvantage. 

Sleep regularity is increasingly recognized as a fundamental determinant of health, and is a stronger 

predictor of cardiometabolic outcomes and quality of life than sleep duration.4,10 The norms we begin 

to establish here provide a reference for researchers and clinicians intending to quantify sleep 

regularity with the SRI. Relative to other measures of variability in sleep timing, the SRI offers two key 

advantages: (i) it compares sleep-wake patterns between consecutive days (i.e., on a circadian 

timescale), meaning it may assess circadian disruption3; (ii) the SRI makes no assumptions about the 

structure of sleep (e.g., no assumption of one main sleep bout), making it applicable to populations 

with unusual sleep structure, such as shift workers or individuals with highly fragmented sleep.1,11 We 

have developed a package to calculate SRI scores from accelerometer or binary sleep-wake data in R, 

available at https://github.com/dpwindred/sleepreg. The package can be used in combination with 

GGIR or as a standalone method for calculating SRI from pre-processed sleep-wake data. Processing 

of accelerometer data is based on the methods used here – estimating sleep-wake timing using GGIR, 

identifying fragmented sleep patterns, and identifying and excluding nights containing probable 

estimation errors. Our package also extracts percentile of calculated SRI scores, allowing other 

investigators’ datasets to be compared to the UK Biobank SRI distribution, and generates raster plots 

of sleep-wake patterns. Given the widespread availability and use of consumer and research 

accelerometer data, our package will democratize the use of sleep regularity as an indicator of 

circadian health.  
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Figure 1. (A) Distribution of Sleep Regularity Index scores in 60,997 UK Biobank participants, grouped 

by percentile ranges. Inset raster plots of sleep-wake patterns in three participants represent regular 

(SRI = 94; top), slightly irregular (SRI = 70; middle), and highly irregular (SRI = 34; bottom) sleep-wake 

patterns. (B) Mean intra-individual standard deviation in sleep timing and duration for each 

percentile range [colour-matched to (A)], calculated using each participant’s one-week data 

collection period. (C) Comparative distributions of standard deviation in sleep timing and duration 

for upper (SRI>87.3) and lower (SRI<71.6) quintiles. 
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Supplementary Material 

1. Sleep Regularity Index (SRI) 

SRI scores were calculated using the following equation:  

𝑆𝑅𝐼 = −100 + 200*1 −
1
𝑁!
,|𝑠" − 𝑠"#$|
%

"&'

/				 

Sleep-wake state is represented by 𝑠" = 1  for wake, 𝑠" = 0  for sleep, and 𝑠" = 𝑁𝐴  represents 

excluded epochs. Number of valid epoch-by-epoch comparisons is represented by 𝑁!, which includes 

all comparisons where 𝑠" ≠ 𝑁𝐴  and 𝑠"#( ≠ 𝑁𝐴 . Where 𝑠" = 𝑁𝐴  or 𝑠"#( = 	𝑁𝐴 , |𝑠" − 𝑠"#(| = 0 . 

Subscript 𝑖 represents each epoch from recording start to 24h prior to recording end, such that at: 

𝑖 = 1, 𝑡' = 0 

𝑖 = 2, 𝑡) = 𝐸 

𝑖 = 3, 𝑡* = 2𝐸 

⁞  

𝑖 = 𝐶, 𝑡$ = 𝐸(𝐶 − 1) = 24 

⁞ 

𝑖 = 𝑁, 𝑡% = 𝐸(𝑁 − 1) = 𝑡+,- − 24 

Time is represented by 𝑡"  , epoch length is represented by 𝐸 , recording length is represented by 𝑡+,- , 

and number of epochs within one 24-h interval is represented by 𝐶. All time values are in hours.  

An SRI score of 100 represents perfectly regular day-to-day sleep-wake patterns, and an SRI score of 

0 represents random patterns. While the possible range of SRI scores is -100 to 100, scores rarely fall 

below zero in practice. A minimum of five days (120 hours) of overlapping valid epochs are required 

for SRI calculation. This is recommended to reduce variability caused by single days of irregular sleep 

timing in short samples 1. Missing epochs of data are excluded in the SRI calculation. The five-day 

minimum rule and handling of missing epochs are built into our package.  
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We recommend using at least 7 consecutive days of sleep-wake data to calculate SRI scores. This will 

minimize violations of the five day overlap rule, while also capturing weekday-weekend variability in 

sleep-wake patterns.  

2. Identification of daily sleep onset and offset timing with GGIR 

Daily sleep-wake timing predictions from accelerometer data were made using GGIR (version 2.0-0).2,3 

A full description of the GGIR package can be found at: https://cran.r-

project.org/web/packages/GGIR/GGIR.pdf.  

Raw data from Axivity AX3 devices were converted to .csv format and downsampled to 1 Hz to speed 

up computation for the very large dataset, before being input to the ‘read.myacc.csv’ function in GGIR, 

which extracts accelerometer data from .csv files. A full list of our specified GGIR parameters can be 

found in our package source code, and in GGIR’s ‘config’ file output. One noteworthy non-default 

parameter was the window size for detecting device angle change, which we increased from 5 seconds 

to 15 seconds, allowing for more accurate detection of sustained inactivity and sleep-wake times in 

our downsampled (1 Hz) data (‘windowsize’ parameter3).  

GGIR’s ‘sleeponset’ and ‘wakeup’ variables were used as daily sleep onset and offset times, and 

‘SleepDurationInSpt’ was used as sleep duration (representing sustained inactivity time within GGIR’s 

daily ‘sleep window’). Standard deviations were calculated at the intra-individual level across all valid 

days of actigraphy data. GGIR defined invalid days as any interval from noon-noon with >4-h of data 

classified as missing, clipped, or non-wear. 

3. Identification of naps and fragmented sleep patterns 

GGIR assumes only one sleep episode per day as one of its key rules. Since naps and fragmented sleep 

patterns contribute substantially to SRI scores, we accounted for these in our SRI calculation. 

GGIR defines wake after sleep onset (WASO) as any epoch within each ‘sleep window’ that does not 

contain sustained accelerometer inactivity. We defined ‘WASO’ as any epoch of 30 minutes or longer 
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without any sustained inactivity, inside GGIR-defined sleep windows. We defined ‘naps’ as any interval 

of 30 minutes or longer with at least 95% sustained inactivity (excluding intervals classified as non-

wear time, described below), outside GGIR-defined sleep windows. Sustained inactivity is defined by 

GGIR as any continuous period of 5 minutes or longer where the angle of the device relative to the z-

axis does not change by more than 5 degrees. 

4. Identification of miscalculated sleep onset and offset times 

We chose to identify and exclude days where sleep onset or offset times were likely miscalculated by 

GGIR, after identification of such cases by visual inspection across a subset of the data. Miscalculated 

times were identified based on sustained inactivity within the 1.5-h intervals both before and after 

onset and offset of GGIR’s predicted daily sleep windows. For the two 1.5-h intervals inside each sleep 

window, onset/offset times were classified as miscalculated if <20% of the interval was sustained 

inactivity (representing probable wake where sleep should be present). Similarly, for intervals outside 

the sleep window, onset/offset times were classified as miscalculated if >85% of the interval was 

sustained inactivity (representing probable sleep where wake should be present). Percentages values 

were determined by visual inspection of accelerometer data and predicted onset/offset times.  

Classification of miscalculated days is optional in our package, since sleep-wake timing predictions 

may improve in subsequent versions of GGIR. 

5. Non-wear detection 

Non-wear detection was implemented according to methods described in van Hees et. al.4 In addition 

to GGIR’s built-in non-wear detection algorithm, we also wrote our own version of this method, 

allowing for customizability of parameters, output of non-wear data as .csv files, and to catch cases 

where GGIR’s non-wear detection failed.  

All identified non-wear epochs outside GGIR’s sleep windows were excluded prior to SRI calculation. 

Identified non-wear epochs within GGIR’s sleep windows were not excluded, due to the tendency of 
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the algorithm to identify short intermittent periods of non-wear during sleep (i.e., when a participant 

is very still, but likely wearing the device). 

All days with more than 6 h of non-wear were excluded, to prevent cases of systematic non-wear 

introducing bias in SRI scores (e.g., removing the device for the duration of the sleep period every 

night).  

6. ‘sleepreg’ package 

Our package is available for download via Github: https://github.com/dpwindred/sleepreg 

Calculate SRI from accelerometer data 

Downsampling (‘ds_accel_csv’). Accelerometer files are downsampled to 1 Hz creating a consistent 

input format for GGIR, and increasing speed. Recording frequency of greater than or equal to 1 Hz is 

required for input files. 

Non-wear detection (‘nonwear_detect’). Non-wear is evaluated in 15-minute epochs, based on 

surrounding 60-minute windows. Standard deviation <13mg and range <50mg in at least two 

accelerometer axes is required for non-wear classification. 

GGIR (‘GGIR_from_csv’). Specifies parameters and implements GGIR across .csv accelerometer files, 

extracting sleep-wake predictions and sustained inactivity bouts. 

Calculate SRI from GGIR output (‘SRI_from_GGIR’). Uses sleep windows and sustained inactivity bouts 

from GGIR output to calculate SRI scores. Accounts for multiphasic and fragmented sleep and excludes 

days where sleep onset and offset times are miscalculated, using methods described here. Runs across 

GGIR output directories, accounting for both multi-file and single-file GGIR output structures. 

Additional outputs include sleep-wake raster plots, summary of miscalculated nights, and binary 

sleep-wake vectors. 
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Wrapper (‘SRI_from_accel_csv’). Sequentially runs downsampling, non-wear detection, GGIR, and SRI 

calculation.  

Calculate SRI from sleep diary or other binary sleep-wake data 

‘SRI_from_binary’. SRI scores are calculated from binary sleep-wake data in required input format, 

alongside sleep-wake raster plots. 

7. SRI and intra-individual variability in sleep onset, offset, and duration 

Table S1. SRI scores and associated intra-individual variability in sleep onset, offset, and 

duration across one-week actigraphy recordings. Onset and offset are defined by GGIR’s 

‘sleeponset’ and ‘wakeup’ variables. Duration is defined by GGIR’s ‘SleepDurationInSpt’ 

variable, which represents total sustained inactivity time between daily ‘sleeponset’ and 

‘wakeup’ times (i.e., duration = offset – onset – wake after sleep onset). 

  
 

Average Standard Deviation (h) 
SRI Range Percentile Range Sleep Onset Sleep Offset Sleep Duration 
<46 0.0%-1.6% 2.64 2.61 1.73 
46-48 1.6%-1.9% 2.23 2.25 1.77 
48-50 1.9%-2.3% 2.50 2.32 1.74 
50-52 2.3%-2.7% 2.44 2.33 1.80 
52-54 2.7%-3.2% 2.42 2.27 1.85 
54-56 3.2%-3.9% 2.28 2.26 1.75 
56-58 3.9%-4.8% 2.18 1.99 1.73 
58-60 4.8%-5.9% 2.06 1.92 1.66 
60-62 5.9%-7.2% 1.97 1.85 1.67 
62-64 7.2%-8.9% 1.86 1.69 1.62 
64-66 8.9%-11.0% 1.74 1.68 1.58 
66-68 11.0%-13.6% 1.70 1.59 1.56 
68-70 13.6%-16.8% 1.58 1.53 1.52 
70-72 16.8%-20.8% 1.47 1.40 1.43 
72-74 20.8%-25.5% 1.39 1.32 1.38 
74-76 25.5%-31.2% 1.27 1.24 1.31 
76-78 31.2%-37.9% 1.20 1.18 1.27 
78-80 37.9%-45.7% 1.09 1.11 1.21 
80-82 45.7%-54.5% 1.00 1.02 1.13 
82-84 54.5%-64.2% 0.91 0.98 1.06 
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84-86 64.2%-73.7% 0.84 0.91 1.00 
86-88 73.7%-82.9% 0.73 0.84 0.90 
88-90 82.9%-90.7% 0.66 0.78 0.85 
90-92 90.7%-95.9% 0.58 0.71 0.77 
92-94 95.9%-98.8% 0.51 0.62 0.72 
94-96 98.8%-99.8% 0.41 0.49 0.62 
>96 99.8%-100.0% 0.41 0.42 0.56 

 

8. Relationships of SRI with demographic variables 

All demographic variables were collected during participants’ initial assessment visit (2006-2010), with 

the exception of sex, date of birth, and Townsend Deprivation Index, which were based on NHS 

Registry data and updated during initial assessment if required. Accelerometer data used to calculate 

SRI scores was collected between June 2013 and January 2016. Participants were instructed to wear 

devices continuously for seven days under free-living conditions. Complete participant instructions 

are available at: https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=141141  

Ethical approval was granted by the North West Multi-centre Research Ethics Committee (MREC), 

covering the UK. Approvals have also been granted by the National Information Governance Board for 

Health & Social Care (NIGB) in England and Wales, and the Community Health Index Advisory Group 

(CHIAG) in Scotland. Informed consent was obtained from all participants. 

Sex (Field ID: 31) 

There was a significant difference in SRI scores between males (M±SD = 78.1±11.1) and females (M±SD 

= 79.3±10.3) (two-sample t-test, t(56,788) = 13.6, p<.0001, Cohen’s d = 0.11).  

Age  

Age at actigraphy commencement was calculated based on year and month of birth in 60,993 

participants.  

Qualifications  (Field ID: 6138) 
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Six educational qualifications were compared: Certificate of Secondary Education (CSE), National 

Vocational Qualification (NVQ) / Higher National Diploma (HND) / Higher National Certificate (HNC),  

Other qualifications (e.g., nursing, teaching), O Levels (completion of school years 10-11), A Levels 

(completion of secondary education, school years 12-13;), and University. A total of 55,153 had 

provided their qualifications and had valid SRI scores.  

There was a significant difference in SRI scores between yearly household income groups (ANOVA, F(5, 

55,147) = 39.3, p<.0001). Multiple comparisons (Tukey’s HSD) revealed those with higher levels of 

educational qualifications also exhibited higher SRI scores (all with p<.01), with the exception of the 

three relationships between O Levels, A Levels, and Other qualifications (e.g., nursing, teaching), and 

the relationship between CSE (pre-O Level) and NVQ/HND/HNC (vocational) qualifications, which 

were non-significant (Figure S1). For example, those with University-level qualifications had higher SRI 

scores than all other groups, and those with CSE qualifications had lower SRI than all other groups 

except for those with NVQ/HND/HNC qualifications. 

Yearly household income (Field ID: 738) 

Yearly household income was compared across five income brackets: <£18k, £18k-£29.9k, £30k-

£51.9k, £52k-£100k, >£100k. A total of 54,621 provided their yearly household income and had valid 

SRI scores. 

There was a significant difference in SRI scores between yearly household income groups (ANOVA, F(4, 

54,616) = 139.4, p<.0001). Multiple comparisons (Tukey’s HSD) revealed significantly lower SRI scores 

in groups with lower yearly income (all with p<.0001), with the exception of the relationship between 

the two highest income levels, which was non-significant (Figure S1). 

Ethnic background (Field ID: 21000) 
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Ethnic background was collected under six broad categories: White (97.2%), Asian (0.9%), Black (0.7%), 

Chinese (0.2%), Mixed (0.5%), and Other (0.5%). A total of 60,780 provided their ethnic background 

and had valid SRI scores.  

There was a significant difference in SRI scores between ethnic groups (Kruskal-Wallis test, H(5) = 

331.68, p<.0001). Multiple comparisons (Dunn’s test, Benjamini-Hochberg) revealed significantly 

higher SRI scores in those of white ethnicity (2.6-6.8 points higher), and significantly lower SRI scores 

in those of black ethnicity (2.2-6.8 points lower). There were no significant differences between any 

other ethnic groups (Figure S1). 

Townsend Deprivation Index (Field ID: 189) 

The Townsend Deprivation Index, a measure of material deprivation encompassing unemployment, 

home ownership, car ownership, and household overcrowding, was available in 60,924 participants 

who also had valid SRI scores.  

Employment status (Field ID: 6142) 

Employment status categories were Employed (60.8%), Retired (33.1%), Home/Family Caretaker 

(2.8%), Sick/Disabled (1.5%), Unemployed (1.0%), Volunteer (0.5%), and Student (0.2%). A total of 

60,595 provided their employment status and had valid SRI scores.  

There was a significant difference in SRI scores between employment status groups (Kruskal-Wallis 

test, H(6) = 329.4, p<.0001). Multiple comparisons (Dunn’s test, Benjamini-Hochberg) revealed 

significant differences between all pairs except for Unemployed-Student, Retired-Volunteer, and 

Home/Family Caretaker-Volunteer (Figure S1).  

Shift work status (Field ID: 826) 

Participants were asked whether their job involved shift work, and answered based on four categories: 

Never / rarely, Sometimes, Usually, and Always. We classified people responding Never / rarely as 
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non-shift workers (N = 32,353), and people responding with Sometimes, Usually, or Always as shift 

workers (N = 4,435).  

There was a significant difference in SRI scores between shift workers (M±SD = 75.9±12.0) and non-

shift workers (M±SD = 79.3±10.1) (two-sample t-test, t(5332.8) = 18.1, p<.0001, Cohen’s d = 0.31). 
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Figure S1. SRI scores across yearly income, educational qualification, ethnic background, and 

employment status categories (median, IQR). In each figure, post-hoc comparisons revealed 

significant pairwise differences between all group except those labelled as non-significant (N.S.). 

Categories are ordered by median SRI score, from lowest to highest. *There were no significant 

pairwise differences between any of these groups. 

 






