Fabrication and transport properties of graphene-based nanostructures

Submitted by Roman V. Gorbachev to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics June, 2009

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

> Roman V. Gorbachev June, 2009

Abstract

In this work fabrication and studies of transistor structures based on an atomic sheet of graphite, graphene, are described. Since graphene technology is in its early stages, the development and optimisation of the fabrication process are very important. In this work the impact of various fabrication conditions on the quality of graphene devices is investigated, in particular the effects on the carrier mobility of the details of the mechanical exfoliation procedure, such as environmental conditions and humidity, source of graphite and wafer cleaning procedure. In addition, a comparison is made between the conventional e-beam lithorgaphy and lithography-free fabrication of samples. It was also demonstrated that water and other environmental species play an important role in graphene-to-substrate adhesion and can also contribute to the carrier scattering in graphene.

A technique for creating suspended metal gates was developed for the fabrication of graphene p-n-p structures, and charge transport has been studied in such topgated graphene devices. Depending on the relation between the carrier mean free path and the length of the top-gate we have realized three distinct transport regimes through the p-n-p structure: a) diffusive across the structure; b) ballistic in the regions of p-n junctions but diffusive in the n-region; c) ballistic across the whole p-n-p structure. The second regime has revealed the chiral nature of carriers in graphene. This was demonstrated by comparing the experimental resistance of a single p-n junction with results of electrostatic modeling in the diffusive model. In the third regime we have observed oscillations of the device resistance as a function of carrier concentration in the n-region, which are also dependent on magnetic field. These oscillations have been demonstrated to be a direct consequence of a Fabri-Perot-like interference effect in the graphene p-n-p structures.

Acknowledgements

I would like to express my gratitude to many people who helped me during the period of my PhD studies.

First of all, I am very grateful to my supervisor Prof. Alex Savchenko for his encouragement and support throughout these years. Special thanks goes to Andrew Kretinin and Dave Horsell for sharing their knowledge and experimental experience. It was priceless and much appreciated.

I would like to thank other PhD students: Fedor Tikhonenko and Sasha Mayorov for the assistance they provided at all levels of the research, Adam Price for helping me to improve my English skills, Alexey Kaverzin and Alexey Kozikov to whom I was lucky to work with.

I must also acknowledge all the technical support in the Physics Department. Some things would never have been possible without the help of Paul Wilkins, Stephen Tuckett, Kevin White, Peter Cann, Matthew Wears and Phil Slade. Dave Manning and Adam Woodgate did a great job making sure the supply of liquid helium never stopped. The Stores never ceased to be a treasury full of useful things thanks to John Meakin. I would also like to thank the office staff for all the times their assistance helped me along the way.

Separate thanks to Massimo Gludini for sharing his knowledge of SPM, Kostya Novoselov (Manchester University) for very useful discussions about graphene, Geb Jones and David Anderson (Cavendish Laboratory) for the communication concerning e-beam lithography.

My PhD studies would not have been possible without the financial assistance of the Overseas Research Student Award Scheme and the University of Exeter, and I express my gratitude to them.

I would like to thank my friends George Zorinyants and Tatyana Voronina, Fedor and Natasha Ogrin, Alexander Beloglazov, Andrey Kondratyuk, Olga Mihal'chenko, Sergey Levin and, especially, Julia Lalina for supporting me and having fun together.

And last but not least, I would also like to thank my family for the opportunity to have a good education and support they provided me through all the years of my study.

Contents

A	bstra	nct	2
A	ckno	wledgements	3
C	onter	nts	4
\mathbf{Li}	ist of	Figures	8
\mathbf{Li}	ist of	Tables	15
In	trod	uction	16
1	Bas	ic theoretical concepts of graphene	18
	1.1	Graphene dispersion relation. Tight binding approximation	18
	1.2	Low energy approximation. Dirac Hamiltonian. Berry phase	22
	1.3	Chirality, DOS	26
	1.4	Transistor structure: graphene on $n-Si/SiO_2$	28
	1.5	Carrier scattering in graphene on SiO_2	29
	1.6	Conclusion	31
2	Exp	perimental methods of graphene fabrication	32
	2.1	Introduction	32
	2.2	Wafers for graphene deposition	34
		2.2.1 General information	34
		2.2.2 Cleaning methods	35
		2.2.3 Surface topography	36
		2.2.4 Water on SiO_2	37
	2.3	Graphite	39

		2.3.1	General information	39
		2.3.2	Adhesion to graphite surface	41
	2.4	Conve	ntional graphene deposition $\ldots \ldots \ldots$	43
	2.5	Enviro		44
	2.6	Thin f	lakes search and identification	46
	2.7	AFM :	study of graphene and its environment $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	47
		2.7.1	Introduction	47
		2.7.2	Step height measurements	48
		2.7.3	Morphology of graphene on silica	50
		2.7.4	Effect of high electric field on SiO_2 wafers $\ldots \ldots \ldots \ldots$	51
		2.7.5	Contamination induced by electric field	53
		2.7.6	Contamination after fabrication and annealing	54
	2.8	Conclu	asion	57
3	Dev	ice Fal	brication	58
	3.1	Introd	uction	58
	3.2	Electro	on Beam Lithography	59
	3.3	Elphy	quantum. Exposure logistics	61
	3.4	Spatia	l energy distribution. Proximity effect.	63
	3.5	E-beau	m resists	65
	3.6	Multil	ayer resist. Development	68
	3.7	Metali	zation. Undercut profile. Lift-off	69
	3.8	Packag	ging and bonding	72
	3.9	"Old"	fabrication route	73
	3.10	"New"	fabrication route	74
	3.11	Exam	ple of graphene Hall-bar fabrication	75
	3.12	Shapir	ng graphene flakes	80
	3.13	Sampl	es storage and handling	81
	3.14	Flake	suspension and further technology development	83
	3.15	Summ	ary	84
4	Trai	nsport	in graphene flakes	36
	4.1	- Introd	uction \ldots	86
	4.2	Experi	imental setup	86
		-	-	

Bi	ibliog	graphy	134
7	Fur	ther developments and suggestions	132
	6.8	Conclusion	. 131
	6.7	Transport through p-n-p structure in magnetic field	. 128
	6.6	Fully ballistic regime of the p-n-p structure	. 124
	6.5	Diffusive and ballistic regimes of a single p-n interface	. 121
	6.4	Electrostatic modeling	. 119
	6.3	Experimental results: overview	. 117
	6.2	Characteristic lengths of a p-n-p structure, effects of disorder	. 115
	6.1	Transmission through a single p-n junction	. 112
6	Tra	nsport in top-gated structures	112
	5.6	Conclusion	. 111
	5.5	Way forward	. 109
	5.4	Undercut profile and dose selection	. 106
		5.3.2 Resist intermixing	. 105
		5.3.1 Focusing and exposure	. 104
	5.3	EBL and resist	. 104
	5.2	General technique	. 103
	5.1	Introduction	. 102
5	Sus	pended bridge fabrication	102
	4.9	Conclusion	. 101
	4.8	Weak Localisation	. 100
		4.7.2 Experimental observation of resistance in high B	. 97
		4.7.1 Specifics of high B behaviour in graphene	. 96
	4.7	Transport in high magnetic field	. 96
	4.6	Temperature dependencies of the conductivity: experimental results	. 95
	4.5	Review of scattering mechanisms	. 92
		Samples Statistics	. 89
	4.4	Annealing and Doping	
	4.3	Basic characterisation	. 87

A Inserts

141

List of Figures

1.1	Graphene honeycomb crystal lattice. (a) Two independent sublattices	
	are shown with different colour, yellow rhombus is the primitive cell.	
	(b) Graphene lattice in the reciprocal space, yellow fill shows two	
	possible selections of the Brillouin zone	19
1.2	Band diagram of graphene in the nearest neighbours approximation	
	according to relation 1.12.	22
1.3	Lines of the constant energy for the graphene dispersion relation 1.12.	23
1.4	Change from the hexagonal Brillouin zone to the diamond-shaped	23
1.5	Illustration for the chirality in graphene – yellow and blue colours	
	denote chirality of 1 and -1	27
2.1	Different termination of the oxide surface.	34
2.2	TAFM surface image of silicon dioxide, 1 - roughness distribution and	
	2 - autocorrelation function for the given image	37
2.3	Water H-bonded to silanol terminated SiO_2 .	38
2.4	Dependence on the relative humidity of: water film thickness on	
	SiO_2 by XPS study (left axis) and the surface potential measured	
	by Kelvin-probe AFM (right axis) [32]	38
2.5	Hexagonal graphite lattice arranged in Bernal $A\bar{B}$ stacking	40
2.6	SEM image of natural graphite, scale bar 100 $\mu \mathrm{m.}$	40
2.7	Micrometer size water droplets on graphite surface [36]	41
2.8	Comparison of binding energies of molecules on graphite surface ob-	
	tained from the friction experiments to other values in literature.	
	From [41]	42
2.9	Nitto adhesive tape (blue) with graphite flakes (black)	43
2.10	Chamber for environmental graphene deposition	44

2.11	Density of deposited graphite as a function of relative humidity	45
2.12	Optical image of a multi-step flake under optical microscope, (a) with	
	white light source, (b) green filtered. Scale bar is 20 $\mu m.~1$ and 2	
	denote single layer and bilayer parts	47
2.13	Schematics of scanning probe microscope.	48
2.14	TAFM image of a folded graphene flake. Insets give the height profiles	
	averaged over rectangular boxes 1 and 2, respectively	49
2.15	TAFM image of a graphene flake. Number 1 denotes SiO_2 , 2 –	
	graphene single and 3 – triple-layer regions. \ldots \ldots \ldots \ldots \ldots	50
2.16	Flake manipulation using the AFM tip. (a) TAFM scan of the initial	
	flake, b – folded flake, c – zoomed area indicated on image b. \ldots	52
2.17	Effect of local charging of silicon dioxide. Scale bar is 2 μ m	52
2.18	Topography of pristine flake (a), phase contrast image of contami-	
	nated (b) and heavily contaminated (c) flake. All images have the	
	same scale and were acquired in the same region	54
2.19	Topography of a pristine graphene flake on silica (left) and a sample	
	which passed the conventional contact fabrication procedure (right).	55
2.20	Effect of annealing on topography of graphene devices: (a) a sample	
	annealed in helium at 150° C; (b) single line scan showed as the	
	white dashed line in (a); (c) annealed in Ar/H_2 mixture at 400° C;	
	(d) summary table for topography measurements. Scale bar is 1 μ m.	56
0.1		
3.1	Schematic of an electron beam microscope	60
3.2	Pattern fragmentation before the exposure. Numbers shown default	
	left-to-right exposure order	61
3.3	Gaussian contribution from forward scattering (solid line) and back-	
	scattering (dashed dot line) for low (a) and high (b) beam energy.	
	Proximity effect: initial pattern (c), actual dose distribution (d) and	
	profile of developed resist (e)	64
3.4	Metal contacts to a graphene flake. Left - correct dose distribution	
	and shape, right - distortion due to the proximity effect. Scale bar 1	
	μ m	64

LIST OF FIGURES

3.5	Developed resist thickness plotted against exposure dose. Solid line	
	is normal resist; dashed line is the same resist with higher molecular	
	weight, short dashed – with broad distribution of molecular weights	66
3.6	Structure of PMMA polymer.	67
3.7	PMMA reaction under electron or UV irradiation	68
3.8	Structure of the P(MMA-MAA) copolymer.	69
3.9	Illustration of the 'shadow' effect during metal evaporation using two	
	sources.	71
3.10	Lift-off in the acetone distiller	71
3.11	A piece of silicon wafer with a graphene sample glued and bonded to	
	a package	72
3.12	Back side of the package for the further electrical connections	72
3.13	Standard technological route. Dotted block can be placed in any of	
	two positions.	74
3.14	Second technological route	75
3.15	Optical image of uncovered flake on 275 nm silicon dioxide surface	
	(in white light)	77
3.16	Optical image of the flake covered with $\sim 100~{\rm nm}$ PMMA layer and	
	the 4 nearest crosses (green light)	77
3.17	Structure design superimposed on the optical image of a graphene flake.	78
3.18	Optical image of the developed contact pattern	79
3.19	Optical image of the finished sample	79
3.20	Plasma etching of graphene flakes: (a) initial optical image of a flake,	
	(b) Hall-bar design (black lines), (c) final device after the etching and	
	contacts fabrication. Scale bar is 2 μ m	81
3.21	SEM image of the sample damaged by ESD	82
3.22	SEM image of the sample damaged by thermal shock. A split in the	
	flake can be seen around the contact.	82
3.23	SEM image of (left side) suspended and (right side) collapsed parts	
	of a graphene flake, tilt 45°.	84

4.1	Characterization of a graphene sample: a - resistivity (left scale,	
	black) and conductivity (right scale, red) as a function of the car-	
	rier concentration, b - carrier mobility (left scale, black) and mean	
	free path (right scale, red) as a function of the carrier concentration	88
4.2	(a) Effect of annealing on the $R(V_{\rm bg})$ dependence of single and bi-	
	layer graphene samples. Inset shows optical image of the sample.	
	(b) Statistical results on the graphene mobilities plotted against peak	
	values of the sheet resistance. Black circles denote standard fabrica-	
	tion technique, blue dots – flakes deposited in dry argon, red dots –	
	lithography-free technique	90
4.3	Lithography-free graphene device. Flake lenth is ${\sim}20~\mu{\rm m}.$ $~$	91
4.4	(a) Conductance as a function of back-gate voltage for different tem-	
	peratures, top black curve shows result of the linearization procedure.	
	(b) Extracted values of $R_{\rm min}$ as a function of temperature. (c) Slope	
	α as a function of temperature. Colours denote different samples. 	95
4.5	Shubnikov-de Haas oscillations (a) and Hall effect (b) as a function of	
	magnetic field for three different concentrations indicated as coloured	
	dots on $R(V_{bg})$ in the inset of (b). Temperature is 4 K, carrier mobility	
	for the studied range on V_{bg} is $\mu = 12000 \text{ cm}^2/\text{Vs.} \dots \dots \dots$	98
4.6	Left axis: quantum lifetime as a function of the carrier concentration	
	for different temperatures (corresponded data shown as symbols, see	
	colour-code). Right axis: momentum relaxation time (refers to solid	
	line) calculated from $R(V_{\rm bg})$	99
4.7	R_{xx} as a function of B for $n = 1.5 \cdot 10^{12} \text{ cm}^{-2}$, $T = 50 \text{ mK}$. The filling	
	factor values are found from the position in B of centers of minima	
	in R_{xx}	99
4.8	The longitudinal (black and red, left axis) and transverse (green and	
	blue, right axis) conductivity as a function of gate voltage, with $T=$	
	5.6 K $B = 12.5$ T	99
5.1	Stages of suspended gate fabrication: a – electron beam exposure, b,c	
	– resist development, d – metalization and e – lift-off	.04

5.2 Contamination spot grown using 20 second point-like exposure. . . . 105

5.3	PMMA dissolution rates, taken from [99]
5.4	Undercut profile for different resist configurations. Bilayer (a) (span)
	and triple layer (b) (pillar), (c) (span) resist techniques
5.5	Developed resist thickness against the exposure dose for the two dif-
	ferent resist layers. Red lines d_{span} and $d_{pillars}$ illustrate a correct
	exposure doses for the different regions of suspended bridge 107
5.6	SEM image of three different bridges made with 45° tilt to the sur-
	face. Image (b) shows the optimal span dose, whilst (c) and (a) are
	overexposed and underexposed cases, respectively
5.7	Bridge clearance as a function of the span dose. Three curves show
	60, 75 and 150 nm wide patterns resulting in 90, 105 and 150 nm real
	span width, respectively
5.8	Nanotube suspension: a nanotube embedded into resist (a), illustra-
	tion for metal clamping (b)
5.9	MWCN manipulation on a graphene sample. Initial (a) and final (b)
	positions of the nanotube (highlighted with the green arrow) imaged
	with TAFM
6.1	Illustration of chiral tunneling through a sharp p-n junction (see text).112
6.2	Tunneling through a smooth p-n junction
6.3	Illustration for different transport regimes inside p-n-p structure:
	from (a) fully diffusive to (c) fully ballistic
6.4	Oscillations in (a) transmission coefficient and (b) resistance as a
	function of the potential depth under the top gate from $[104]$. Inset
	shows scaling of the peak positions as a function of $n^{2/3}$, where n is
	the peak number
6.5	Sample S2: (a) SEM image and (b) resistance in high magnetic field
	(see text)
6.6	Top-gate dependence of the resistance for different values of $V_{\rm bg}$ =
	$V_{\text{bg}}^{\text{off}} + i[V]$, where i = 19, from top to bottom
6.7	Colour-scale plot of the resistance as a function of $V_{\rm tg}$ and $V_{\rm bg}$ (sample

6.8	Electrostatic modeling reported in [94]: (a) Geometry of top gated	
	structure used in the calculations, (b,c,d) potential profile along the	
	flakes S1,S2,S3 at fixed $V_{\rm bg}$ and different $V_{\rm tg}$. Bold bars indicate the	
	mean free path length	120
6.9	(a) Resistivity of samples S1, S2 and S3 as a function of $V_{\rm bg}$, at	
	$T = 50$ K and $V_{\rm tg} = 0$. (b,c,d) The resistance of samples S1, S2 and	
	S3, respectively, as a function of $V_{\rm tg}$ (values of $V_{\rm bg}$ shown as symbols	
	in (a)). The empty circles show the result of the modeling assuming	
	diffusive transport of carriers.	122
6.10	Resistance as a function of $V_{\rm tg}$ showing an oscillatory behaviour for a	
	small values of l_{pnp} in the range of V_{tg} between 19 and 32 V	124
6.11	The oscillations at 4.2 K: reproducibility test for a different meso-	
	scopic realization, curves shifted by 0.5 k Ω	124
6.12	Reproducibility test for the dependence shown in Fig.6.10. Black and	
	red curves denote different sweep directions.	125
6.13	Temperature dependence of the oscillations. The curves are shifted	
	by 0.5 k Ω .	125
6.14	Results of electrostatic modeling for sample S4: (a) potential profile	
	along the flake calculated for different top-gate voltages; (b) depen-	
	dence of $l_{\rm pnp}$ and the potential depth ε on the top-gate voltage; (c)	
	the parabolic fit for the potential shape (see text)	127
6.15	Comparison of the observed peak positions (black dots) with the the-	
	oretically predicted values (red dots and line) [104]	128
6.16	Shift of the oscillations in magnetic field: red curve $B = 0$, blue	
	$B = 300 \text{ mT.} \dots \dots$	129
6.17	Grey-scale plot of resistance as a function of $V_{\rm tg}$ and B showing a	
	shift of the oscillations	129
6.18	Magnetoresistance up to 1.5 T for three different regions on the	
	$R(V_{tg}).$ Solid lines are the weak localisation fits	130
A.1	Modification done to Heliox VL criostat cold-finger. Allows quick and	
	reliable connection of the sample packages to the cryostat wires	141

- A.2 Low temperature part of the experimental insert used for characterisation study of graphene samples and annealing in a transport dewar. 142
- A.3 Environmental chamber for doping experiments. Insert with the sample nest, heater and environmental gauges (top) and a chamber body with transparent optical window, gas inlet and pumping port. 143

List of Tables

6.1	Summary of measured samples.		•	•	•	•		•		•	•	•	•	•	11	8