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Abstract

In this work fabrication and studies of transistor structures based on an atomic

sheet of graphite, graphene, are described. Since graphene technology is in its early

stages, the development and optimisation of the fabrication process are very impor-

tant. In this work the impact of various fabrication conditions on the quality of

graphene devices is investigated, in particular the effects on the carrier mobility of

the details of the mechanical exfoliation procedure, such as environmental conditions

and humidity, source of graphite and wafer cleaning procedure. In addition, a com-

parison is made between the conventional e-beam lithorgaphy and lithography-free

fabrication of samples. It was also demonstrated that water and other environmen-

tal species play an important role in graphene-to-substrate adhesion and can also

contribute to the carrier scattering in graphene.

A technique for creating suspended metal gates was developed for the fabrication

of graphene p-n-p structures, and charge transport has been studied in such top-

gated graphene devices. Depending on the relation between the carrier mean free

path and the length of the top-gate we have realized three distinct transport regimes

through the p-n-p structure: a) diffusive across the structure; b) ballistic in the

regions of p-n junctions but diffusive in the n-region; c) ballistic across the whole

p-n-p structure. The second regime has revealed the chiral nature of carriers in

graphene. This was demonstrated by comparing the experimental resistance of a

single p-n junction with results of electrostatic modeling in the diffusive model. In

the third regime we have observed oscillations of the device resistance as a function

of carrier concentration in the n-region, which are also dependent on magnetic field.

These oscillations have been demonstrated to be a direct consequence of a Fabri-

Perot-like interference effect in the graphene p-n-p structures.
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